AUIRF7799L2 Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7799l2-html.html
background image

 

AUIRF7799L2TR 

Base Part Number  

Package Type   

Standard Pack 

Form Quantity 

AUIRF7799L2 

DirectFET Large Can 

Tape and Reel 

4000 

AUIRF7799L2TR 

Orderable Part Number  

AUTOMOTIVE GRADE 

V

(BR)DSS 

250V 

R

DS(on)

   typ. 

32m

 

I

D (Silicon Limited) 

35A 

             max. 

38m

 

Q

g (typical)

 

110nC 

 

DirectFET

®

 

ISOMETRIC 

 

 

L8 

Automotive DirectFET

®

 Power MOSFET  

Applicable DirectFET

®

  Outline and  Substrate Outline   

SB 

SC 

  

  

M2  

M4 

  

L4 

L6 

L8 

  

Description 

The AUIRF7799L2TR combines the latest Automotive HEXFET

®

 Power MOSFET Silicon technology with the advanced DirectFET

®

 packaging to 

achieve the lowest on-state resistance in a package that has the footprint of a DPak (TO-252AA) and only 0.7 mm profile. The DirectFET

®

  package is 

compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering 
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET

®

 package allows dual 

sided cooling to maximize thermal transfer in automotive power systems. 
This HEXFET

®

 Power MOSFET is designed for applications where efficiency and power density are essential. The advanced DirectFET

®

 packaging 

platform coupled with the latest silicon technology allows the AUIRF7799L2TR to offer substantial system level savings and performance improvement 
specifically in motor drive, high frequency DC-DC and other heavy load applications on ICE, HEV and EV platforms. This MOSFET utilizes the latest 
processing techniques to achieve low on-resistance and low Qg per silicon area. Additional features of this MOSFET are 175°C operating junction 
temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for 
high current automotive applications. 

Absolute Maximum Ratings 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.   These are stress ratings only; and 
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under 
board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified. 

  

Parameter Max. 

Units 

V

DS 

Drain-to-Source Voltage 

250 

V  

V

GS 

Gate-to-Source Voltage 

±30 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)  35 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)  25 

I

D

 @ T

A

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)  6.6 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Package Limited)  

375 

I

DM 

Pulsed Drain Current  140 

P

D

 @T

C

 = 25°C 

Power Dissipation  125 

P

D

 @T

A

 = 25°C 

Power Dissipation  4.3 

E

AS 

Single Pulse Avalanche Energy (Thermally Limited)  325 

mJ 

 

I

AR 

Avalanche Current  

See Fig. 16, 17, 18a, 18b  

E

AR 

Repetitive Avalanche Energy  

mJ 

T

Peak Soldering Temperature 

270 

°C  

T

J  

Operating Junction and 

-55  to + 175 

T

STG 

Storage Temperature Range 

  

P

D

 @T

C

 = 100°C 

Power Dissipation  63 

 

2015-10-5 

HEXFET® is a registered trademark of Infineon. 
*Qualification standards can be found at 

www.infineon.com

 

  Advanced Process Technology  

 

Optimized for Automotive Motor Drive, DC-DC and 

 

other Heavy Load Applications  

 

Exceptionally Small Footprint and Low Profile  

 

High Power Density  

 

Low Parasitic Parameters 

 

 

Dual Sided Cooling  

 

175°C Operating Temperature  

 

Repetitive Avalanche Capability for Robustness and Reliability  

 

Lead free, RoHS and Halogen free  

 Automotive Qualified * 

 

D

D

S

S

S

S

S

S

S

S

G

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7799l2-html.html
background image

 

AUIRF7799L2TR 

 

2015-10-5 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JA

  

Junction-to-Ambient   

––– 

35 

R

JA

  

Junction-to-Ambient   

12.5 

––– 

R

JA

  

Junction-to-Ambient   

20 

––– 

R

J-Can

  

Junction-to-Can  ––– 

1.2 

R

J-PCB

  

Junction-to-PCB Mounted  

––– 

0.5 

 

Linear Derating Factor  0.83 

W/°C 

°C/W  

Static Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified)  

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

250 

––– 

––– 

V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.12  ––– 

V/°C  Reference to 25°C, I

D

 = 2.0mA 

R

DS(on) 

  

Static Drain-to-Source On-Resistance   

––– 32  38  m  V

GS

 = 10V, I

D

 = 21A  

V

GS(th) 

Gate Threshold Voltage 

3.0 

4.0 

5.0 

V

DS

 = V

GS

, I

D

 = 250µA  

V

GS(th)

/

T

J  

Gate Threshold Voltage Coefficient 

––– 

-13 

–––  mV/°C 

gfs Forward 

Transconductance 

54 

––– 

––– 

V

DS

 = 50V, I

D

 = 21A 

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  20  µA  V

DS

 = 250V, V

GS

 = 0V 

––– –––  1 

V

DS

 = 250V, V

GS

 = 0V, T

J

 = 125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

––– 

100 

nA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

–––  -100 

V

GS

 = -20V 

Dynamic Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified)  

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Conditions 

Q

Total Gate Charge 

––– 

110 

165 

nC  

V

DS

 = 125V 

Q

gs1 

Gate-to-Source Charge 

––– 

26 

––– 

V

GS

 = 10V 

Q

gs2 

Gate-to-Source 

Charge 

––– 5.7 ––– 

I

D

 = 21A 

Q

gd 

Gate-to-Drain ("Miller") Charge 

––– 

39 

 

See Fig.11 

Q

godr 

Gate Charge Overdrive 

––– 

39 

––– 

 

Q

sw 

Switch Charge (Q

gs2

 + Q

gd

) ––– 

45 

––– 

 

Q

oss 

Output Charge 

––– 

33 

––– 

nC  V

DS

 = 16V, V

GS

 = 0V 

t

d(on) 

Turn-On Delay Time 

–––  36.3  ––– 

ns 

V

DD

 = 125V, V

GS

 = 10V   

t

Rise 

Time 

––– 33.5 ––– 

I

D

 = 21A 

t

d(off) 

Turn-Off Delay Time 

–––  73.9  ––– 

R

G

 = 6.2

 

t

Fall 

Time 

––– 26.6 ––– 

 

C

iss 

Input Capacitance 

–––  6714  ––– 

pF 

V

GS

 = 0V 

C

oss 

Output 

Capacitance 

––– 606 ––– 

V

DS

 = 25V 

C

rss 

Reverse 

Transfer 

Capacitance 

––– 157 ––– 

ƒ = 1.0 MHz 

C

oss 

Output Capacitance 

–––  5063  ––– 

V

GS

 = 0V, V

DS

 = 1.0V, ƒ = 1.0 MHz 

C

oss 

Output 

Capacitance 

––– 217 ––– 

V

GS

 = 0V, V

DS

 = 200V, ƒ = 1.0 MHz 

R

Internal 

Gate 

Resistance 

––– 0.73 –––    

mA 

Notes  through  are on page 3   

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7799l2-html.html
background image

 

AUIRF7799L2TR 

 

2015-10-5 

Diode Characteristics 

 

 

 

 

 

Symbol 

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

–––    –––   

35 

A  

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

–––    –––   

integral reverse 

(Body Diode)  

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.3 

T

J

 = 25°C, I

S

 = 21A, V

GS

 = 0V  

t

rr 

   

Reverse Recovery Time   

––– 132 198  ns  T

J

 = 25°C, I

F

 = 21A, V

DD

 = 50V 

Q

rr 

  

Reverse Recovery Charge   

––– 1412 2118  nC  dv/dt = 100A/µs  

140 

 Surface mounted on 1 in. 

square Cu board  (still air). 

 Mounted on minimum 

footprint full size board with 
metalized back and with small 
clip heatsink (still air). 

 Mounted to a PCB with 

small clip heatsink (still air) 

  Click on this section to link to the appropriate technical paper. 

  Click on this section to link to the DirectFET

®

  Website. 

  Surface mounted on 1 in. square Cu board, steady state. 

  T

C

 measured with thermocouple mounted to top (Drain) of part. 

  Repetitive rating;  pulse width limited by max. junction temperature. 

 Starting T

J

 = 25°C, L = 1.42mH, R

G

 = 25

, I

AS

 = 21A. 

 Pulse width 

 400µs; duty cycle  2%. 

  Used double sided cooling, mounting pad with large heatsink. 

  Mounted on minimum footprint full size board with metalized back and with small clip heat sink. 

  R

 is measured at T

J

 of approximately 90°C. 

D

S

G

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7799l2-html.html
background image

 

AUIRF7799L2TR 

 

2015-10-5 

Fig. 3 

Typical On-Resistance vs. Gate Voltage

 

 

Fig. 1 Typical Output Characteristics 

Fig 5.   Typical Transfer Characteristics

 

Fig 6.  Normalized On-Resistance vs. Temperature

 

 

Fig. 2 Typical Output Characteristics 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

D

ra

in

-t

o

-S

o

ur

ce

 C

u

rr

en

t (

A

)

VGS

TOP           15V

10V

8.0V

7.0V

6.5V

6.0V

5.5V

BOTTOM

5.0V

60µs PULSE WIDTH

 Tj = 25°C

5.0V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

D

ra

in

-t

o

-S

o

ur

ce

 C

u

rr

en

t (

A

)

VGS

TOP           15V

10V

8.0V

7.0V

6.5V

6.0V

5.5V

BOTTOM

5.0V

60µs PULSE WIDTH

 Tj = 175°C

5.0V

4

8

12

16

20

VGS, Gate -to -Source Voltage  (V)

20

40

60

80

100

120

140

160

180

200

R

D

S

(o

n

),

  D

ra

in

-t

-S

ou

rc

e

 O

R

es

is

ta

nc

(m

)

ID = 21A

TJ = 25°C

TJ = 125°C

3

4

5

6

7

VGS, Gate-to-Source Voltage (V)

0.1

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

(A

)

TJ = 175°C

TJ = 25°C

TJ = -40°C

VDS = 50V

60µs PULSE WIDTH

0

20

40

60

80

100

ID, Drain Current (A)

25

30

35

40

45

50

55

60

T

yp

ic

al

 R

D

S

(o

n)

 (

m

)

TJ = 25°C

Vgs = 7.0V 
Vgs = 8.0V 
Vgs = 10V 
Vgs = 15V 

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Junction Temperature (°C)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R

D

S

(o

n)

 ,

 D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 21A

VGS = 10V

Fig. 4 

Typical On-Resistance vs. Drain Current

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7799l2-html.html
background image

 

AUIRF7799L2TR 

 

2015-10-5 

 

Fig 11.  Typical Gate Charge vs.  

 Gate-to-Source Voltage 

-75 -50 -25 0

25 50 75 100 125 150 175

TJ , Temperature ( °C )

1.0

2.0

3.0

4.0

5.0

6.0

V

G

S

(t

h)

, G

at

T

hr

es

ho

ld

 V

ol

ta

ge

 (

V

)

ID = 250µA

ID = 1.0mA

ID = 1.0A

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

1000

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 175°C

TJ = 25°C

TJ = -40°C

VGS = 0V

0

20

40

60

80

100

120

ID,Drain-to-Source Current (A)

0

40

80

120

160

200

G

fs

, F

or

w

ar

T

ra

ns

co

nd

uc

ta

nc

(S

)

TJ = 25°C

TJ = 175°C

VDS = 50V 
20µs PULSE WIDTH

Fig. 7 Typical Threshold Voltage vs. 

Junction Temperature 

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

100

1000

10000

100000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

Fig 8.  Typical Source-Drain Diode Forward Voltage 

0

20

40

60

80

100 120 140 160

 QG,  Total Gate Charge (nC)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 200V

VDS= 125V

VDS= 50V

ID= 21A

Fig 9.  Typical Forward Trans conductance vs. Drain Current 

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

10

20

30

40

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Fig 12. Maximum Drain Current vs. Case Temperature 

Fig 10.  Typical Capacitance vs. Drain-to-Source Voltage 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7799l2-html.html
background image

 

AUIRF7799L2TR 

 

2015-10-5 

Fig 16.  Typical Avalanche Current vs. Pulse Width  

Fig 14. Maximum Avalanche Energy vs. Temperature 

Fig 13.  Maximum Safe Operating Area 

1

10

100

1000

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

1000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

Tc = 25°C
Tj = 175°C
Single Pulse

100µsec

1msec

10msec

DC

25

50

75

100

125

150

175

Starting T J , Junction Temperature (°C)

0

200

400

600

800

1000

1200

1400

E

A

S

 , 

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP          1.33A
  

2.53A

BOTTOM  21A

1E-006

1E-005

0.0001

0.001

0.01

0.1

1

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

Fig 15.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

Ri (°C/W) 

i (sec)

0.38829 

0.000787 

0.8117 

0.006586 

J

J

1

1

2

2

R

1

R

1

R

2

R

2

C

C

Ci= 

iRi

Ci= 

iRi

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming j = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming Tj = 150°C and 

Tstart =25°C (Single Pulse)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7799l2-html.html
background image

 

AUIRF7799L2TR 

 

2015-10-5 

Notes on Repetitive Avalanche Curves , Figures 16, 17: 
(For further info, see AN-1005 at www.infineon.com)
 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 18a, 18b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 16, 17).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 15) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

Fig 18a.  Unclamped Inductive Test Circuit 

Fig 18b.  Unclamped Inductive Waveforms 

Fig 19a.  Gate Charge Test Circuit 

Fig 19b.   Gate Charge Waveform 

VDD 

Fig 20a.  Switching Time Test Circuit 

Fig 20b.  Switching Time Waveforms 

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

300

350

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1.0% Duty Cycle
ID = 21A

Fig 17.  Maximum Avalanche Energy vs. Temperature 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7799l2-html.html
background image

 

AUIRF7799L2TR 

 

2015-10-5 

DirectFET

®

  Board Footprint, L8  (Large Size Can). 

Please see DirectFET

®

  application note AN-1035 for all details regarding the assembly of DirectFET

®

 .  

This includes all recommendations for stencil and  substrate designs.

  

G = GATE
D = DRAIN
S = SOURCE

G

D

D

D

D

D

D

S

S

S

S

S

S

S

S

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7799l2-html.html
background image

 

AUIRF7799L2TR 

 

2015-10-5 

DirectFET

®

  Outline Dimension, L8  (Large Size Can). 

Please see DirectFET

®

  application note AN-1035 for all details regarding the assembly of DirectFET

®

 . This includes 

all recommendations for stencil and  substrate designs. 

DirectFET

® 

 Part Marking 

"AU" = GATE AND

AUTOMOTIVE MARKING

PART NUMBER

LOGO

BATCH NUMBER

DATE CODE

Line above the last character of

the date code indicates "Lead-Free"

CODE

A
B
C
D
E
F

G
H

J

K

L

M

R

P

0.017

0.029

0.003

0.007

0.057
0.104

0.236

0.048

0.026
0.024

MAX

0.360
0.280

0.38

0.68

0.02

0.09

1.35
2.55

5.90

1.18

0.55
0.58

MIN

9.05
6.85

0.42

0.74

0.08

0.17

1.45
2.65

6.00

1.22

0.65
0.62

MAX

9.15
7.10

0.015

0.027
0.003
0.001

0.100

0.053

0.232

0.046

0.023

0.022

MIN

0.270

0.356

METRIC

IMPERIAL

DIMENSIONS

0.98

1.02

0.73

0.77

0.040

0.039

0.030

0.029

L1

0.215

5.35

5.45

0.211

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7799l2-html.html
background image

 

AUIRF7799L2TR 

10 

 

2015-10-5 

DirectFET

® 

 Tape & Reel Dimension (Showing component orientation)  

LOADED TAPE FEED DIRECTION

NOTE: CONTROLLING
DIMENSIONS IN MM

CODE

A
B
C

D
E

F

G
H

IMPERIAL

MIN

4.69

0.154
0.623

0.291

0.283
0.390
0.059
0.059

MAX

12.10

4.10

16.30

7.60
7.40

10.10

N.C

 1.60

MIN

11.90

3.90

15.90

7.40
7.20
9.90
1.50
1.50

METRIC

DIMENSIONS

MAX

0.476

0.161

0.642
0.299

0.291

0.398

N.C

0.063

REEL DIMENSIONS

NOTE: Controlling dimensions in mm
Std reel quantity is 4000 parts, ordered as AUIRF7799L2TR.

MAX

N.C
N.C

0.520

N.C

3.940
0.880
0.720
0.760

IMPERIAL

MIN

330.00

20.20

12.80

1.50

99.00

N.C

16.40
15.90

STANDARD OPTION (QTY 4000)

CODE

  A
  B
  C
  D
  E

  F

  G
  H

MAX

N.C
N.C

13.20

N.C

100.00

22.40

18.40
19.40

MIN

12.992

0.795
0.504
0.059
3.900

N.C

0.650
0.630

METRIC

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

Maker
Infineon Technologies