AUIRF7675M2TR Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7675m2-html.html
background image

 

AUIRF7675M2TR 

Base Part Number  

Package Type   

Standard Pack 

Form Quantity 

AUIRF7675M2 

DirectFET Medium Can 

Tape and Reel 

4800 

AUIRF7675M2TR 

Orderable Part Number  

AUTOMOTIVE GRADE 

V

(BR)DSS 

150V 

R

DS(on)

   typ. 

47m

 

R

g (typical)

 

1.2

 

             max. 

56m

 

Q

g (typical)

 

21nC 

 

DirectFET

®

 

ISOMETRIC 

 

 

M2 

Automotive DirectFET

®

 Power MOSFET  

Applicable DirectFET

®

  Outline and  Substrate Outline   

SB 

SC 

  

  

M2  

M4 

  

L4 

L6 

L8 

  

Description 

The AUIRF7675M2TR/TR1 combines the latest Automotive HEXFET® Power MOSFET Silicon technology with the advanced DirectFET packaging 
platform to produce a best in class part for Automotive Class D audio amplifier applications. The DirectFET package is compatible with existing layout 
geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application 
note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal 
transfer in automotive power systems. 
This HEXFET Power MOSFET optimizes gate charge, body diode reverse recovery and internal gate resistance to improve key Class D audio 
amplifier performance factors such as efficiency, THD and EMI. Moreover the DirectFET packaging platform offers low parasitic inductance and 
resistance when compared to conventional wire bonded SOIC packages which improves EMI performance by reducing the voltage ringing that 
accompanies current transients.  
These features combine to make this MOSFET a highly desirable component in Automotive Class D audio amplifier systems.  

Absolute Maximum Ratings 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.   These are stress ratings only; and 
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under 
board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified. 

  

Parameter Max. 

Units 

V

DS 

Drain-to-Source Voltage 

150 

V  

V

GS 

Gate-to-Source Voltage 

±20 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)  18 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)  13 

I

D

 @ T

A

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited)  4.4 

I

DM 

Pulsed Drain Current  72 

P

D

 @T

C

 = 25°C 

Power Dissipation  45 

P

D

 @T

A

 = 25°C 

Power Dissipation  2.7 

E

AS 

Single Pulse Avalanche Energy (Thermally Limited)  59 

mJ  

E

AS 

(Tested)

 

Single Pulse Avalanche Energy  170 

I

AR 

Avalanche Current  

See Fig. 16, 17, 18a, 18b  

E

AR 

Repetitive Avalanche Energy  

mJ 

T

Peak Soldering Temperature 

270 

°C  

T

J  

Operating Junction and 

-55  to + 175 

T

STG 

Storage Temperature Range 

  

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Package Limited) 

90 

 

2015-12-14 

HEXFET® is a registered trademark of Infineon. 
*Qualification standards can be found at 

www.infineon.com

 

  Advanced Process Technology  

 

Optimized for Class D Audio Amplifier Applications 

 

Low Rds(on) for Improved Efficiency 

 

Low Qg for Better THD and Improved Efficiency 

 

Low Qrr for Better THD and Lower EMI

 

 

 

Low Parasitic Inductance for Reduced Ringing and Lower EMI

  

 

 

Delivers up to 250W per Channel into 4

 with No Heat sink 

 

 

Dual Sided Cooling  

 

175°C Operating Temperature  

 

Repetitive Avalanche Capability for Robustness and Reliability  

 

Lead free, RoHS and Halogen free  

 Automotive Qualified * 

 

D

D

G

S

S

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7675m2-html.html
background image

 

AUIRF7675M2TR 

 

2015-12-14 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JA

  

Junction-to-Ambient   

––– 

60 

R

JA

  

Junction-to-Ambient   

12.5 

––– 

R

JA

  

Junction-to-Ambient   

20 

––– 

R

J-Can

  

Junction-to-Can  ––– 

3.3 

R

J-PCB

  

Junction-to-PCB Mounted  

1.4 

––– 

 

Linear Derating Factor  0.3 

W/°C 

°C/W  

Static Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified)  

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

150 

––– 

––– 

V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.16 

––– 

V/°C  Reference to 25°C, I

D

 = 1.0mA 

R

DS(on) 

  

Static Drain-to-Source On-Resistance   

––– 47  56  m  V

GS

 = 10V, I

D

 = 11A  

V

GS(th) 

Gate Threshold Voltage 

3.0 

4.0 

5.0 

V

DS

 = V

GS

, I

D

 = 100µA  

V

GS(th)

/

T

J  

Gate Threshold Voltage Coefficient 

––– 

-11 

–––  mV/°C 

gfs Forward 

Transconductance 

16 

––– 

––– 

V

DS

 = 50V, I

D

 = 11A 

R

Internal Gate Resistance 

––– 

1.2 

5.0 

   

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  20 

µA 

V

DS

 = 150V, V

GS

 = 0V 

––– ––– 250 

V

DS

 = 150V, V

GS

 = 0V, T

J

 = 125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

––– 

100 

nA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

–––  -100 

V

GS

 = -20V 

Dynamic Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified)  

Symbol Parameter 

Min. 

Typ. 

Max. 

Units 

Conditions 

Q

Total Gate Charge 

––– 

21 

32 

nC  

V

DS

 = 75V 

Q

gs1 

Gate-to-Source Charge 

––– 

5.2 

––– 

V

GS

 = 10V 

Q

gs2 

Gate-to-Source Charge 

––– 

1.6 

––– 

I

D

 = 11A 

Q

gd 

Gate-to-Drain ("Miller") Charge 

––– 7.1 ––– 

See Fig. 6 and 17 

Q

godr 

Gate Charge Overdrive 

––– 

7.1 

––– 

 

Q

sw 

Switch Charge (Q

gs2

 + Q

gd

) ––– 

8.7 

––– 

 

Q

oss 

Output Charge 

––– 

8.8 

––– 

nC  V

DS

 = 16V, V

GS

 = 0V 

t

d(on) 

Turn-On Delay Time 

––– 

10 

––– 

ns 

V

DD

 = 75V, V

GS

 = 10V   

t

Rise Time 

––– 

13 

––– 

I

D

 = 11A 

t

d(off) 

Turn-Off Delay Time 

––– 

14 

––– 

R

G

 = 6.8

 

t

Fall Time 

––– 

7.5 

––– 

 

C

iss 

Input Capacitance 

–––  1360  ––– 

pF 

V

GS

 = 0V 

C

oss 

Output Capacitance 

––– 

190 

––– 

V

DS

 = 25V 

C

rss 

Reverse Transfer Capacitance 

––– 

41 

––– 

ƒ = 1.0 MHz 

C

oss 

Output Capacitance 

–––  1210  ––– 

V

GS

 = 0V, V

DS

 = 1.0V, ƒ = 1.0 MHz 

C

oss 

Output Capacitance 

––– 

92 

––– 

V

GS

 = 0V, V

DS

 =120V, ƒ = 1.0MHz 

Notes  through  are on page 3   

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7675m2-html.html
background image

 

AUIRF7675M2TR 

 

2015-12-14 

Diode Characteristics 

 

 

 

 

 

Symbol 

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

–––    –––   

18 

A  

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

–––    –––   

integral reverse 

(Body Diode)  

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.3 

T

J

 = 25°C, I

S

 = 11A, V

GS

 = 0V  

t

rr 

   

Reverse Recovery Time   

––– 63  95  ns  T

J

 = 25°C, I

F

 = 11A, V

DD

 = 25V 

Q

rr 

  

Reverse Recovery Charge   

––– 180 270  nC  dv/dt = 100A/µs  

72  

 Surface mounted on 1 in. 

square Cu board  (still air). 

 Mounted on minimum 

footprint full size board with 
metalized back and with small 
clip heatsink (still air). 

 Mounted to a PCB with 

small clip heatsink (still air) 

  Click on this section to link to the appropriate technical paper. 

  Click on this section to link to the DirectFET

®

  Website. 

  Surface mounted on 1 in. square Cu board, steady state. 

  T

C

 measured with thermocouple mounted to top (Drain) of part. 

  Repetitive rating;  pulse width limited by max. junction temperature. 

 Starting T

J

 = 25°C, L = 1.33mH, R

G

 = 50

, I

AS

 = 11A. 

 Pulse width 

 400µs; duty cycle  2%. 

  Used double sided cooling, mounting pad with large heatsink. 

  Mounted on minimum footprint full size board with metalized back and with small clip heat sink. 

  R

 is measured at T

J

 of approximately 90°C. 

D

S

G

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7675m2-html.html
background image

 

AUIRF7675M2TR 

 

2015-12-14 

Fig. 3 

Typical On-Resistance vs. Gate Voltage

 

 

Fig. 1 Typical Output Characteristics 

Fig 5.  Transfer Characteristics

 

Fig 6.  Normalized On-Resistance vs. Temperature

 

 

Fig. 2 Typical Output Characteristics 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

 60µs PULSE WIDTH
Tj = 25°C

5.0V

VGS

TOP           15V

10V
8.0V
7.0V
6.5V
6.0V
5.5V

BOTTOM

5.0V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

0.1

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

 60µs PULSE WIDTH
Tj = 175°C

5.0V

VGS

TOP           15V

10V
8.0V
7.0V
6.5V
6.0V
5.5V

BOTTOM

5.0V

6

8

10

12

14

16

18

20

VGS, Gate -to -Source Voltage  (V)

40

60

80

100

120

140

R

D

S

(o

n)

,  

D

ra

in

-t

-S

ou

rc

O

n

 R

es

is

ta

n

ce

 (

m

)

ID = 11A

TJ = 25°C

TJ = 125°C

0

10

20

30

40

50

60

ID, Drain Current (A)

40

80

120

160

200

R

D

S

(o

n)

,  

D

ra

in

-t

-S

ou

rc

O

R

es

is

ta

nc

(

m

)

Vgs = 10V 

TJ = 25°C

TJ = 125°C

3

4

5

6

7

8

9

VGS, Gate-to-Source Voltage (V)

0.01

0.1

1

10

100

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

TJ = -40°C
TJ = 25°C
TJ = 175°C

VDS = 50V
60µs PULSE WIDTH

-60 -40 -20 0 20 40 60 80 100120140160180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

2.5

3.0

R

D

S

(o

n)

 , 

D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 11A
VGS = 10V

Fig. 4 

Typical On-Resistance vs. Drain Current

 

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7675m2-html.html
background image

 

AUIRF7675M2TR 

 

2015-12-14 

 

Fig 10.  Typical Capacitance vs. Drain-to-Source Voltage 

Fig 9.  Typical Forward Trans conductance vs. Drain Current 

-75 -50 -25 0

25 50 75 100 125 150 175

TJ , Temperature ( °C )

1.5

2.5

3.5

4.5

5.5

V

G

S

(t

h)

,  

G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 100µA

ID = 250µA

ID = 1.0mA

ID = 1.0A

0.2

0.4

0.6

0.8

1.0

VSD, Source-to-Drain Voltage (V)

0.1

1

10

100

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = -40°C
TJ = 25°C
TJ = 175°C

VGS = 0V

0

4

8

12

16

20

24

ID,Drain-to-Source Current (A)

0

10

20

30

40

50

G

fs

, F

or

w

ar

T

ra

ns

co

nd

uc

ta

nc

(S

)

TJ = 25°C

TJ = 175°C

VDS = 10V 
380µs PULSE WIDTH

Fig. 7 Typical Threshold Voltage vs. 

Junction Temperature 

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

10000

100000

C

, C

ap

ac

ita

nc

(p

F

)

VGS   = 0V,       f = 1 MHZ

Ciss    = Cgs + Cgd,  C ds SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

Coss

Crss

Ciss

Fig 8.  Typical Source-Drain Diode Forward Voltage 

0

4

8

12

16

20

24

28

 QG,  Total Gate Charge (nC)

0

2

4

6

8

10

12

14

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 120V
VDS= 75V
VDS= 30V

ID= 11A

Fig 11.  Typical Gate Charge vs.  

 Gate-to-Source Voltage 

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

4

8

12

16

20

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Fig 12. Maximum Drain Current vs. Case Temperature 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7675m2-html.html
background image

 

AUIRF7675M2TR 

 

2015-12-14 

Fig 16.  Typical Avalanche Current vs. Pulse Width  

Fig 15.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

Fig 14. Maximum Avalanche Energy vs. Temperature 

Fig 13.  Maximum Safe Operating Area 

0.1

1

10

100

1000

VDS  , Drain-toSource Voltage (V)

0.1

1

10

100

1000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C
Tj = 175°C
Single Pulse

1msec

10msec

OPERATION IN THIS AREA 
LIMITED BY RDS(on)

100µsec

DC

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

E A

S

 ,

 S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

ID

TOP           2.2A

  4.5A

BOTTOM   11A

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

10

T

he

rm

al

 R

es

po

ns

Z

 th

JC

 ) 

°C

/W

0.20
0.10

D = 0.50

0.02
0.01

0.05

SINGLE PULSE
( THERMAL RESPONSE )

Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc

J

J

1

1

2

2

3

3

R

1

R

1

R

2

R

2

R

3

R

3

Ci= 

iRi

Ci= 

iRi

C

C

4

4

R

4

R

4

1.381063 

0.007407 

1.312033 

0.039921 

0.104573 

2.1E-05 

0.501388 

0.000741 

Ri (°C/W) 

i (sec)

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.01

0.1

1

10

100

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

j = 25°C and 

Tstart = 150°C.

0.01

Allowed avalanche Current vs avalanche 
pulsewidth, tav, assuming 

Tj = 150°C and 

Tstart =25°C (Single Pulse)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7675m2-html.html
background image

 

AUIRF7675M2TR 

 

2015-12-14 

Notes on Repetitive Avalanche Curves , Figures 16, 17: 
(For further info, see AN-1005 at www.infineon.com)
 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 18a, 18b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 16, 17).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 15) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

Fig 18a.  Unclamped Inductive Test Circuit 

Fig 18b.  Unclamped Inductive Waveforms 

Fig 19a.  Gate Charge Test Circuit 

Fig 19b.   Gate Charge Waveform 

VDD 

Fig 20a.  Switching Time Test Circuit 

Fig 20b.  Switching Time Waveforms 

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

10

20

30

40

50

60

E A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = 11A

Fig 17.  Maximum Avalanche Energy vs. Temperature 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7675m2-html.html
background image

 

AUIRF7675M2TR 

 

2015-12-14 

DirectFET

®

  Board Footprint, M2 (Medium Size Can). 

Please see DirectFET

®

  application note AN-1035 for all details regarding the assembly of DirectFET

®

 .  

This includes all recommendations for stencil and  substrate designs.

  

G

D

S

D

D

D

S

G = GATE
D = DRAIN
S = SOURCE

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7675m2-html.html
background image

 

AUIRF7675M2TR 

 

2015-12-14 

DirectFET

®

  Outline Dimension, M2 Outline (Medium Size Can). 

Please see DirectFET

®

  application note AN-1035 for all details regarding the assembly of DirectFET

®

 . This includes 

all recommendations for stencil and  substrate designs. 

DirectFET

® 

 Part Marking 

CODE

A
B

C
D

E
F

G
H

J

K

L

R

0.003

0.047
0.094

0.156

0.032

0.018
0.024

MAX

0.250

0.02

1.10
2.30

3.85

0.78

0.35
0.58

MIN

6.25
4.80

0.08

1.20
2.40

3.95

0.82

0.45
0.62

MAX

6.35
5.05

0.001

0.090

0.043

0.152

0.031

0.023

0.014

MIN

0.189

0.246

METRIC

IMPERIAL

DIMENSIONS

I

N/A

N/A

0.78

0.82

N/A

N/A

0.032

0.031

0.032

0.78

0.82

0.031

0.015

0.017

0.38

0.42

M

P

0.029
0.007

0.68
0.09

0.74
0.17

0.027
0.003

0.199

PART NUMBER

LOGO

BATCH NUMBER

DATE CODE

Line above the last character of

the date code indicates "Lead-Free"

"AU" = GATE AND

AUTOMOTIVE MARKING

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf7675m2-html.html
background image

 

AUIRF7675M2TR 

10 

 

2015-12-14 

DirectFET

® 

 Tape & 

Reel Di-

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

REEL DIMENSIONS

NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts, order as AUIRF7675M2TR.

B

C

 MAX
 N.C
 N.C

0.520

 N.C
 N.C

0.724
0.567
0.606

IMPERIAL

H

 MIN

330.0

 20.2
 12.8
  1.5

100.0

  N.C
 12.4
 11.9

STANDARD OPTION (QTY 4800)

CODE

  A
  B
  C
  D
  E
  F
  G
  H

 MAX
 N.C
 N.C
 13.2
 N.C
 N.C
 18.4
 14.4
 15.4

 MIN

12.992

0.795
0.504
0.059
3.937

 N.C

0.488
0.469

METRIC

G

E

F

A

D

Loaded Tape Feed Direction

 MIN
 7.90
 3.90

11.90

 5.45

5.10
6.50

 1.50
 1.50

NOTE: CONTROLLING

DIMENSIONS IN MM

CODE

 A
 B
 C
 D
 E
 F
 G
 H

 MAX

0.319
0.161
0.484
0.219
0.209
0.264
 N.C
0.063

 MIN
0.311
0.154
0.469
0.215
0.201
0.256
0.059
0.059

 MAX
 8.10
 4.10

12.30

 5.55

5.30
6.70

 N.C
 1.60

DIMENSIONS

METRIC

IMPERIAL

U

Maker
Infineon Technologies