AUIRF4905S/L Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf4905s-html.html
background image

 

AUIRF4905S 

AUIRF4905L 

Absolute Maximum Ratings 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress 
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not 
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance 
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless 
otherwise specified. 

Features 

  Advanced Planar Technology 

 P-Channel 

MOSFET 

 Low 

On-Resistance 

  150°C Operating Temperature 
 Fast 

Switching 

  Repetitive Avalanche Allowed up to Tjmax 

  Lead-Free, RoHS Compliant 

  Automotive Qualified *  

Description 

Specifically designed for Automotive applications, this cellular design of 
HEXFET® Power MOSFETs utilizes the latest processing techniques to 
achieve low on-resistance per silicon area. This benefit combined with the 
fast switching speed and ruggedized device design that HEXFET power 
MOSFETs are well known for, provides the designer with an extremely 
efficient and reliable device for use in Automotive and a wide variety of other 
applications. 

 

2015-11-13 

HEXFET® is a registered trademark of Infineon. 
*Qualification standards can be found at 

www.infineon.com

 

AUTOMOTIVE GRADE 

HEXFET

® 

Power MOSFET 

V

DSS 

-55V 

R

DS(on)

   max. 

20m

 

I

D (Silicon Limited) 

-70A 

I

D (Package Limited) 

-42A  

 

D

2

Pak 

AUIRF4905S 

G D  S 

Gate Drain Source 

Base part number 

Package Type 

Standard Pack 

Orderable Part Number   

Form 

Quantity 

AUIRF4905L 

TO-262  

Tube  

50 

AUIRF4905L 

AUIRF4905S  

D

2

-Pak    

Tube  

50 

AUIRF4905S 

Tape and Reel Left  

800 

AUIRF4905STRL 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

-70 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

-44 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Package Limited) 

-42 

I

DM 

Pulsed Drain Current  -280 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

170 

  

Linear Derating Factor 

1.3 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 20 

E

AS  

Single Pulse Avalanche Energy (Thermally Limited)  140 

mJ  

E

AS 

(tested)

 

Single Pulse Avalanche Energy Tested Value  790 

I

AR 

Avalanche Current  

See Fig.15,16, 12a, 12b   

E

AR 

Repetitive Avalanche Energy  

 

mJ 

T

J  

Operating Junction and 

-55  to + 150 

 

T

STG 

Storage Temperature Range 

  

°C 

  

Soldering Temperature, for 10 seconds (1.6mm from case)  

300 

 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case ––– 

0.75 

°C/W   

R

JA

  

Junction-to-Ambient ( PCB Mount, steady state)   

40 

TO-262 

AUIRF4905L 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf4905s-html.html
background image

 

AUIRF4905S/L 

 

2015-11-13 

Notes:

 Repetitive rating;  pulse width limited by max. junction temperature. (See fig.11) 

  Limited by T

Jmax, 

starting  T

J

 = 25°C, L = 0.16mH, R

G

 = 25

, I

AS

 = -42A, V

GS

 =-10V. Part not recommended for use above this value. 

 Pulse width 

1.0ms; duty cycle  2%. 

  C

oss

 eff.  is a fixed capacitance that gives the same charging time as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS



Limited by T

Jmax

 , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  

  This value determined from sample failure population, starting  T

J

 = 25°C, L = 0.08mH, R

G

 = 25

, I

AS

 = 66A, V

GS

 =10V.  

  This is applied to D

Pak, When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering 

 

techniques refer to application note #AN-994  



R

 is measured at T

J

 of approximately 90°C 

Static @ T

J

 = 25°C (unless otherwise specified) 

  

Parameter 

Min. Typ. Max. Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

-55 

––– 

––– 

V  V

GS

 = 0V, I

D

 = -250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  -0.054  –––  V/°C  Reference to 25°C, I

D

 = -1mA  

R

DS(on) 

   

Static Drain-to-Source On-Resistance    

––– 

––– 

20 

m

 V

GS

 = -10V, I

D

 = -42A 

V

GS(th) 

Gate Threshold Voltage 

-2.0  ––– 

-4.0 

V  V

DS

 = V

GS

, I

D

 = -250µA 

gfs 

Forward Trans conductance 

19 

––– 

––– 

S  V

DS

 = -25V, I

D

 = -42A 

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  -25 

µA 

V

DS

 = -55V, V

GS

 = 0V 

––– ––– -250 

V

DS

 = -44V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

–––  -100 

nA   

V

GS

 = -20V 

 

Gate-to-Source Reverse Leakage 

––– 

––– 

100 

V

GS

 = 20V 

Dynamic  Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified) 

Q

Total Gate Charge  

––– 

120 

180 

nC  

I

D

 = -42A 

Q

gs 

Gate-to-Source Charge 

––– 

32 

––– 

V

DS

 = -44V 

Q

gd 

Gate-to-Drain Charge 

––– 

53 

––– 

V

GS

 = -10V 

t

d(on) 

Turn-On Delay Time 

––– 

20 

––– 

ns 

V

DD

 = -28V 

t

Rise Time 

––– 

99 

––– 

I

D

 = -42A 

t

d(off) 

Turn-Off Delay Time 

––– 

51 

––– 

R

G

= 2.6



t

Fall Time 

––– 

64 

––– 

V

GS

 = -10V  

L

D

 

Internal Drain Inductance 

––– 

4.5 

––– 

nH   

Between lead, 
6mm (0.25in.) 

L

Internal Source Inductance 

––– 

7.5 

––– 

from package 
and center of die contact 

C

iss 

Input Capacitance 

–––  3500  ––– 

pF  

V

GS

 = 0V 

C

oss 

Output Capacitance 

–––  1250  ––– 

V

DS

 = -25V 

C

rss 

Reverse Transfer Capacitance 

––– 

450 

––– 

ƒ = 1.0MHz 

C

oss 

Output Capacitance 

–––  4620  ––– 

V

GS

 = 0V,V

DS

 = -1.0V ƒ = 1.0MHz 

C

oss 

Output Capacitance 

––– 

940 

––– 

V

GS

 = 0V,V

DS

 = -44V ƒ = 1.0MHz 

C

oss eff. 

Effective Output Capacitance  

–––  1530  ––– 

V

GS

 = 0V, V

DS

 = 0V to -44V  

Diode Characteristics  

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– –––  -42 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– -280 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

-1.3 

V  T

J

 = 25°C,I

= -42A,V

GS

 = 0V 

t

rr  

Reverse Recovery Time  

––– 

61 

92 

ns   T

J

 = 25°C ,I

F

 = -42A , V

DD

 = -28V    

Q

rr  

Reverse Recovery Charge  

––– 

150 

220 

nC    di/dt = 100A/µs 

t

on 

Forward Turn-On Time 

Intrinsic turn-on time is negligible (turn-on is dominated by L

S

+L

D

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf4905s-html.html
background image

 

AUIRF4905S/L 

 

2015-11-13 

Fig. 2 Typical Output Characteristics 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 1 Typical Output Characteristics 

Fig. 4 

Typical Forward Trans conductance 

vs. Drain Current 

0.1

1

10

100

1000

-VDS, Drain-to-Source Voltage (V)

1

10

100

1000

-I

D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

 60µs PULSE WIDTH

Tj = 25°C

-4.5V

VGS

TOP           -15V

-10V

-8.0V

-7.0V

-6.0V

-5.5V

-5.0V

BOTTOM

-4.5V

0.1

1

10

100

1000

-VDS, Drain-to-Source Voltage (V)

1

10

100

1000

-I

D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

 60µs PULSE WIDTH

Tj = 150°C

-4.5V

VGS

TOP           -15V

-10V

-8.0V

-7.0V

-6.0V

-5.5V

-5.0V

BOTTOM

-4.5V

3

4

5

6

7

8

9

10 11 12 13 14

-VGS, Gate-to-Source Voltage (V)

0.1

1.0

10.0

100.0

1000.0

-I

D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

)

VDS = -25V

 60µs PULSE WIDTH

TJ = 25°C

TJ = 150°C

0

20

40

60

80

-ID, Drain-to-Source Current (A)

0

10

20

30

40

G

fs

F

or

w

ar

T

ra

ns

co

nd

uc

ta

nc

(S

)

TJ = 25°C

TJ = 150°C

VDS = -10V

380µs PULSE WIDTH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf4905s-html.html
background image

 

AUIRF4905S/L 

 

2015-11-13 

Fig 5.  Typical Capacitance vs. Drain-to-Source Voltage

 

 

Fig 8.  Maximum Safe Operating Area  

Fig 6.  Typical Gate Charge vs. Gate-to-Source Voltage

 

 

Fig. 7 Typical Source-to-Drain Diode 

 Forward Voltage 

1

10

100

-VDS, Drain-to-Source Voltage (V)

0

1000

2000

3000

4000

5000

6000

7000

C

, C

ap

ac

ita

nc

(p

F

)

Coss

Crss

Ciss

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  Cds SHORTED
Crss   = Cgd 
Coss  = Cds + Cgd

0

40

80

120

160

200

 QG  Total Gate Charge (nC)

0

4

8

12

16

20

-V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= -44V

VDS= -28V

VDS= -11V

ID= -42A

0.0

0.4

0.8

1.2

1.6

2.0

-VSD, Source-to-Drain Voltage (V)

0.1

1.0

10.0

100.0

1000.0

-I

S

D

R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 150°C

VGS = 0V

0

1

10

100

-VDS  , Drain-toSource Voltage (V)

1

10

100

1000

-I

D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 150°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY R DS(on)

100µsec

DC

LIMITED BY PACKAGE

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf4905s-html.html
background image

 

AUIRF4905S/L 

 

2015-11-13 

 

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

Fig 9.  Maximum Drain Current vs. 

 Case Temperature 

Fig 10.  Normalized On-Resistance 

vs. Temperature 

25

50

75

100

125

150

 TC , Case Temperature (°C)

0

20

40

60

80

-I

D

 ,

 D

ra

in

 C

ur

re

nt

 (

A

)

LIMITED BY PACKAGE

-60 -40 -20

0

20 40 60 80 100 120 140 160

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

R

D

S

(o

n)

 , 

D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = -42A

VGS = -10V

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.001

0.01

0.1

1

T

he

rm

al

 R

es

po

ns

Z  

th

JC

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

J

J

1

1

2

2

3

3

R

1

R

1

R

2

R

2

R

3

R

3

C

C

Ci= 

iRi

Ci= 

iRi

Ri (°C/W) 

i (sec)

0.1165 

0.000068 

0.2608 

0.014811 

0.3734 

0.002347 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf4905s-html.html
background image

 

AUIRF4905S/L 

 

2015-11-13 

Fig 12c. Maximum Avalanche Energy vs. Drain Current 

Fig 12a.  Unclamped Inductive Test Circuit 

Fig 12b.  Unclamped Inductive Waveforms 

Fig 13a.  Gate Charge Test Circuit 

Fig 13b.   Gate Charge Waveform 

Fig 14. Threshold Voltage vs. Temperature

 

25

50

75

100

125

150

Starting TJ, Junction Temperature (°C)

0

100

200

300

400

500

600

E

A

S

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

                 ID

TOP  

        -17A

               -30A

BOTTOM 

  -42A

-75

-50

-25

0

25

50

75

100 125 150

TJ , Temperature ( °C )

2.0

2.4

2.8

3.2

3.6

-V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = -250µA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf4905s-html.html
background image

 

AUIRF4905S/L 

 

2015-11-13 

Fig 15.   Avalanche Current vs. Pulse width  

Fig 16.  Maximum Avalanche Energy vs. Temperature 

Notes on Repetitive Avalanche Curves , Figures 15, 16: 
(For further info, see AN-1005 at www.infineon.com)
 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 12a, 12b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 14, 15).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

0.1

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs 
avalanche pulsewidth, tav 
assuming 

Tj = 25°C due to 

avalanche losses. Note: In no 
case should Tj be allowed to 
exceed Tjmax

0.01

25

50

75

100

125

150

Starting TJ , Junction Temperature (°C)

0

40

80

120

160

E

A

R

 ,

 A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = -42A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf4905s-html.html
background image

 

AUIRF4905S/L 

 

2015-11-13 

 

Fig 17. Peak Diode Recovery dv/dt Test Circuit for P-Channel HEXFET® Power MOSFETs 

Fig 18a.  Switching Time Test Circuit 

Fig 18b.  Switching Time Waveforms 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf4905s-html.html
background image

 

AUIRF4905S/L 

 

2015-11-13 

 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

D

2

Pak (TO-263AB) Part Marking Information 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUIRF4905S 

Lot Code 

Part Number 

IR Logo 

D

2

Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches)) 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf4905s-html.html
background image

 

AUIRF4905S/L 

10 

 

2015-11-13 

 

TO-262 Part Marking Information 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUIRF4905L 

Lot Code 

Part Number 

IR Logo 

TO-262 Package Outline (Dimensions are shown in millimeters (inches) 

Note: For the most current drawing please refer to IR website at 

http://www.irf.com/package/

 

Maker
Infineon Technologies