AUIRF3805/S/L Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf3805-html.html
background image

 

AUIRF3805 

AUIRF3805S 

AUIRF3805L 

V

DSS 

55V 

R

DS(on)

   typ. 

2.6m



              max. 

3.3m



I

D (Silicon Limited) 

210A 

I

D (Package Limited) 

160A  

Features 

  Advanced Process Technology 

  Ultra Low On-Resistance 

  175°C Operating Temperature 

 Fast Switching 
  Repetitive Avalanche Allowed up to Tjmax 

  Lead-Free, RoHS Compliant 

  Automotive Qualified *  

Description 
Specifically designed for Automotive applications, this 
HEXFET® Power MOSFET utilizes the latest processing 
techniques to achieve extremely low on-resistance per silicon 
area. Additional features of this design are a 175°C junction 
operating temperature, fast switching speed and improved 
repetitive avalanche rating. These features combine to make 
this design an extremely efficient and reliable device for use in 
Automotive applications and wide variety of other applications. 

 

2015-9-30 

HEXFET® is a registered trademark of Infineon. 
*Qualification standards can be found at 

www.infineon.com

 

 

AUTOMOTIVE GRADE 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

210 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

150 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Package Limited) 

160 

I

DM 

Pulsed Drain Current  890 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

300 

  

Linear Derating Factor 

2.0 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 20 

E

AS  

Single Pulse Avalanche Energy (Thermally Limited)  650 

mJ  

E

AS 

(tested)

 

Single Pulse Avalanche Energy Tested Value  940 

I

AR 

Avalanche Current  

See Fig.15,16, 12a, 12b   

E

AR 

Repetitive Avalanche Energy  

 

mJ 

T

J  

Operating Junction and 

-55  to + 175 

 

T

STG 

Storage Temperature Range 

  

°C 

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300 

 

 

Mounting torque, 6-32 or M3 screw 

10 lbf•in (1.1N•m) 

   

Absolute Maximum Ratings 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.   These are stress 
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not 
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance 
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless 
otherwise specified. 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case  ––– 

0.50 

°C/W   

R

CS

 

Case-to-Sink, Flat, Greased Surface  0.50 

––– 

R

JA

  

Junction-to-Ambient  ––– 

62 

R

JA

  

Junction-to-Ambient ( PCB Mount, steady state)   

40 

TO-220AB 

AUIRF3805 

D

2

Pak 

AUIRF3805S 

TO-262 

AUIRF3805L 

 

Base part number 

Package Type 

Standard Pack 

Orderable Part Number 

Form 

Quantity 

  

AUIRF3805 

TO-220 

Tube 

50 

AUIRF3805 

AUIRF3805L 

TO-262  

Tube  

50 

AUIRF3805L 

AUIRF3805S  

Tube  

50 

AUIRF3805S 

Tape and Reel Left  

800 

AUIRF3805STRL 

D

2

-Pak    

G D S 

Gate Drain Source 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf3805-html.html
background image

 

AUIRF3805/S/L 

 

2015-9-30 

Notes:



Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 160A.  

 

Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.  

 

(Refer to AN-1140) 

 Repetitive rating;  pulse width limited by max. junction temperature. (See fig. 11) 

  This value determined from sample failure population, starting T

J

 = 25°C, L = 0.23mH, R

G

 = 25

, I

AS

 = 75A, V

GS

 =10V.  

 Pulse width 

1.0ms; duty cycle  2%. 

  C

oss

 eff.  is a fixed capacitance that gives the same charging time as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS

  Limited by T

Jmax

 , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  

  This is only applied to TO-220AB package. 

  This is applied to D

2

Pak When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and  

 

soldering techniques refer to application note #AN-994  

  R

 is measured at T

of approximately 90°C 

  TO-220 device will have an Rth value of 0.45°C/W. 

**  All AC and DC test condition based on old Package limitation current = 75A. 

Static @ T

J

 = 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

55 

–––  ––– 

V  V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.051  –––  V/°C  Reference to 25°C, I

D

 = 1mA  

R

DS(on) 

  

Static Drain-to-Source On-Resistance   

––– 

2.6 

3.3 

m

 V

GS

 = 10V, I

D

 = 75A **

V

GS(th) 

Gate Threshold Voltage 

2.0  

––– 

4.0 

V  V

DS

 = V

GS

, I

D

 = 250µA 

gfs 

Forward Trans conductance 

75 

–––  ––– 

S  V

DS

 = 25V, I

D

 = 75A** 

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  20 

µA 

V

DS

 =55V, V

GS

 = 0V 

––– ––– 250 

V

DS

 =55V,V

GS

 = 0V,T

J

 =125°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

–––  200 

nA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

–––  -200 

V

GS

 = -20V 

Dynamic  Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified) 

Q

Total Gate Charge  

––– 

190  290 

nC  

I

D

 = 75A** 

Q

gs 

Gate-to-Source Charge 

––– 

52 

––– 

V

DS

 = 44V 

Q

gd 

Gate-to-Drain Charge 

––– 

72 

––– 

V

GS

 = 10V 

t

d(on) 

Turn-On Delay Time 

––– 

150  ––– 

ns 

V

DD

 = 28V 

t

Rise Time 

––– 

20 

––– 

I

D

 = 75A** 

t

d(off) 

Turn-Off Delay Time 

––– 

93 

––– 

R

G

= 2.6



t

Fall Time 

––– 

87 

––– 

V

GS

 = 10V  

L

D

 

Internal Drain Inductance 

––– 

4.5 

––– 

 nH  

Between lead, 
6mm (0.25in.) 

L

S

 

Internal Source Inductance 

––– 

7.5 

––– 

from package 
and center of die contact 

C

iss 

Input Capacitance 

–––  7960  ––– 

pF  

V

GS

 = 0V 

C

oss 

Output Capacitance 

–––  1260  ––– 

V

DS

 = 25V 

C

rss 

Reverse Transfer Capacitance 

––– 

630  ––– 

ƒ = 1.0MHz, See Fig. 5 

C

oss 

Output Capacitance 

–––  4400  ––– 

V

GS

 = 0V, V

DS

 = 1.0V ƒ = 1.0MHz 

C

oss 

Output Capacitance 

––– 

980  ––– 

V

GS

 = 0V, V

DS

 = 44V ƒ = 1.0MHz 

C

oss eff. 

Effective Output Capacitance  

––– 1550 ––– 

V

GS

 = 0V, V

DS

 = 0V to 44V  

Diode Characteristics  

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– ––– 210 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– 890 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

–––   1.3 

V  T

J

 = 25°C,I

= 75A**,V

GS

 = 0V 

t

rr  

Reverse Recovery Time  

––– 

36 

54 

ns   T

J

 = 25°C ,I

F

 = 75A**, V

DD

 = 28V 

Q

rr  

Reverse Recovery Charge  

––– 

47 

71 

nC    di/dt = 100A/µs 

t

on 

Forward Turn-On Time 

Intrinsic turn-on time is negligible (turn-on is dominated by L

S

+L

D

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf3805-html.html
background image

 

AUIRF3805/S/L 

 

2015-9-30 

Fig. 2 Typical Output Characteristics 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 4 Typical Forward Transconductance 

vs. Drain Current 

Fig. 1 Typical Output Characteristics 

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

1

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

 60µs PULSE WIDTH

Tj = 25°C

4.5V

VGS

TOP          

15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

0.1

1

10

100

VDS, Drain-to-Source Voltage (V)

10

100

1000

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

 60µs PULSE WIDTH

Tj = 175°C

4.5V

VGS

TOP          

15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

BOTTOM

4.5V

4.0

5.0

6.0

7.0

8.0

VGS, Gate-to-Source Voltage (V)

0.1

1.0

10.0

100.0

1000.0

I D

, D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 

)

VDS = 20V

 60µs PULSE WIDTH

TJ = 25°C

TJ = 175°C

0

20 40 60 80 100 120 140 160 180

ID, Drain-to-Source Current (A)

0

40

80

120

160

200

G

fs

, F

or

w

ar

T

ra

ns

co

nd

uc

ta

nc

(S

)

TJ = 25°C

TJ = 175°C

VDS = 10V

380µs PULSE WIDTH

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf3805-html.html
background image

 

AUIRF3805/S/L 

 

2015-9-30 

Fig 5.  Typical Capacitance vs.  
 

      Drain-to-Source Voltage

 

Fig 6.  Typical Gate Charge vs. 
 

      Gate-to-Source Voltage

 

 

 

Fig 8.  Maximum Safe Operating Area  

Fig. 7 Typical Source-to-Drain Diode 

 Forward Voltage 

1

10

100

VDS, Drain-to-Source Voltage (V)

0

2000

4000

6000

8000

10000

12000

14000

C

, C

ap

ac

ita

nc

(p

F

)

Coss

Crss

Ciss

VGS   = 0V,       f = 1 MHZ

Ciss   = Cgs + Cgd,  Cds SHORTED
Crss   = Cgd 
Coss  = Cds + Cgd

0

50

100

150

200

250

300

 QG  Total Gate Charge (nC)

0

4

8

12

16

20

V

G

S

, G

at

e-

to

-S

ou

rc

V

ol

ta

ge

 (

V

)

VDS= 44V

VDS= 28V

ID= 75A

0.0

0.4

0.8

1.2

1.6

2.0

2.4

VSD, Source-to-Drain Voltage (V)

0.1

1.0

10.0

100.0

1000.0

I S

D

, R

ev

er

se

 D

ra

in

 C

ur

re

nt

 (

A

)

TJ = 25°C

TJ = 175°C

VGS = 0V

1

10

100

1000

VDS  , Drain-toSource Voltage (V)

0.1

1

10

100

1000

10000

I D

,  

D

ra

in

-t

o-

S

ou

rc

C

ur

re

nt

 (

A

)

Tc = 25°C

Tj = 175°C

Single Pulse

1msec

10msec

OPERATION IN THIS AREA 

LIMITED BY RDS(on)

100µsec

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf3805-html.html
background image

 

AUIRF3805/S/L 

 

2015-9-30 

Fig 10.   Normalized On-Resistance 

vs. Temperature 

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

Fig 9.  Maximum Drain Current vs. Case Temperature 

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

40

80

120

160

200

240

I D

 ,

 D

ra

in

 C

ur

re

nt

 (

A

)

LIMITED BY PACKAGE

-60 -40 -20 0

20 40 60 80 100 120 140 160 180

TJ , Junction Temperature (°C)

0.5

1.0

1.5

2.0

R

D

S

(o

n)

 , 

D

ra

in

-t

o-

S

ou

rc

O

R

es

is

ta

nc

   

   

   

   

   

   

   

 (

N

or

m

al

iz

ed

)

ID = 75A

VGS = 10V

1E-006

1E-005

0.0001

0.001

0.01

0.1

t1 , Rectangular Pulse Duration (sec)

0.0001

0.001

0.01

0.1

1

T

he

rm

al

 R

es

po

ns

Z  

th

JC

 )

0.20

0.10

D = 0.50

0.02

0.01

0.05

SINGLE PULSE

( THERMAL RESPONSE )

Notes:

1. Duty Factor D = t1/t2

2. Peak Tj = P dm x Zthjc + Tc

J

J

1

1

2

2

R

1

R

1

R

2

R

2

C

C

Ci= 

iRi

Ci= 

iRi

Ri (°C/W) 

i (sec)

0.2653 

0.001016 

0.2347 

0.012816 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf3805-html.html
background image

 

AUIRF3805/S/L 

 

2015-9-30 

 

Fig 14.   

Threshold Voltage vs. Temperature 

Fig 12c. Maximum Avalanche Energy 

 vs. Drain Current 

Fig 12a.  Unclamped Inductive Test Circuit 

Fig 12b.  Unclamped Inductive Waveforms 

R G

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

tp

V

(BR)DSS

I

AS

Fig 13b.  Gate Charge Test Circuit 

Fig 13a.   Gate Charge Waveform 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

25

50

75

100

125

150

175

Starting TJ, Junction Temperature (°C)

0

400

800

1200

1600

2000

E

A

S

S

in

gl

P

ul

se

 A

va

la

nc

he

 E

ne

rg

(m

J)

                 I D

TOP  

        15A

                20A

BOTTOM 

  75A

-75 -50 -25

0

25

50

75 100 125 150 175

TJ , Temperature ( °C )

1.5

2.0

2.5

3.0

3.5

4.0

4.5

V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = 250µA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf3805-html.html
background image

 

AUIRF3805/S/L 

 

2015-9-30 

 

Fig 15.  Typical Avalanche Current vs. Pulse width  

Notes on Repetitive Avalanche Curves , Figures 15, 16: 
(For further info, see AN-1005 at 

www.infineon.com

 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 12a, 12b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 15, 16).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

Fig 16.  Maximum Avalanche Energy  

vs. Temperature 

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

1

10

100

1000

10000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs 
avalanche pulsewidth, tav 
assuming 

Tj = 25°C due to 

avalanche losses. Note: In no 
case should Tj be allowed to 
exceed Tjmax

0.01

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

200

400

600

800

E

A

R

 ,

 A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   1% Duty Cycle
ID = 75A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf3805-html.html
background image

 

AUIRF3805/S/L 

 

2015-9-30 

 

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 

Fig 18a.  Switching Time Test Circuit 

Fig 18b.  Switching Time Waveforms 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf3805-html.html
background image

 

AUIRF3805/S/L 

 

2015-9-30 

 

 

TO-220AB  package is not recommended for Surface Mount Application. 

TO-220AB Part Marking Information 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUF3805 

Lot Code 

Part Number 

IR Logo 

TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf3805-html.html
background image

 

AUIRF3805/S/L 

10 

 

2015-9-30 

D

2

Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches)) 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUF3805S 

Lot Code 

Part Number 

IR Logo 

D

2

Pak (TO-263AB) Part Marking Information 

Maker
Infineon Technologies