AUIRF2804
AUIRF2804S
AUIRF2804L
V
DSS
40V
R
DS(on)
typ.
1.5m
max.
2.0m
I
D (Silicon Limited)
270A
I
D (Package Limited)
195A
Features
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free, RoHS Compliant
Automotive Qualified *
Description
Specifically designed for Automotive applications, this
HEXFET® Power MOSFET utilizes the latest processing
techniques to achieve extremely low on-resistance per silicon
area. Additional features of this design are a 175°C junction
operating temperature, fast switching speed and improved
repetitive avalanche rating. These features combine to make
this design an extremely efficient and reliable device for use in
Automotive applications and wide variety of other applications.
1
2015-9-30
HEXFET® is a registered trademark of Infineon.
*Qualification standards can be found at
www.infineon.com
AUTOMOTIVE GRADE
Symbol Parameter
Max.
Units
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
270
A
I
D
@ T
C
= 100°C
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
190
I
D
@ T
C
= 25°C
Continuous Drain Current, V
GS
@ 10V (Package Limited)
195
I
DM
Pulsed Drain Current 1080
P
D
@T
C
= 25°C
Maximum Power Dissipation
300
W
Linear Derating Factor
2.0
W/°C
V
GS
Gate-to-Source Voltage
± 20
V
E
AS
Single Pulse Avalanche Energy (Thermally Limited) 540
mJ
E
AS
(tested)
Single Pulse Avalanche Energy Tested Value 1160
I
AR
Avalanche Current
See Fig.15,16, 12a, 12b
A
E
AR
Repetitive Avalanche Energy
mJ
T
J
Operating Junction and
-55 to + 175
T
STG
Storage Temperature Range
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
300
Mounting torque, 6-32 or M3 screw
10 lbf•in (1.1N•m)
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless
otherwise specified.
Thermal Resistance
Symbol Parameter
Typ.
Max.
Units
R
JC
Junction-to-Case –––
0.50
°C/W
R
CS
Case-to-Sink, Flat, Greased Surface
0.50
–––
R
JA
Junction-to-Ambient
–––
62
R
JA
Junction-to-Ambient ( PCB Mount, steady state)
40
TO-220AB
AUIRF2804
D
2
Pak
AUIRF2804S
TO-262
AUIRF2804L
S
D
G
S
D
G
S
D
G
D
Base part number
Package Type
Standard Pack
Orderable Part Number
Form
Quantity
AUIRF2804
TO-220
Tube
50
AUIRF2804
AUIRF2804L
TO-262
Tube
50
AUIRF2804L
AUIRF2804S
Tube
50
AUIRF2804S
Tape and Reel Left
800
AUIRF2804STRL
D
2
-Pak
G D S
Gate Drain Source
AUIRF2804/S/L
2
2015-9-30
Notes:
Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A.
Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
(Refer to AN-1140)
Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
Limited by T
Jmax,
starting T
J
= 25°C, L = 0.24mH, R
G
= 25
, I
AS
= 75A, V
GS
=10V. Part not recommended for use above this value.
Pulse width
1.0ms; duty cycle 2%.
C
oss
eff. is a fixed capacitance that gives the same charging time as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
This value determined from sample failure population, starting T
J
= 25°C, L = 0.24mH, R
G
= 25
, I
AS
= 75A, V
GS
=10V.
This is applied to D
2
Pak When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and
soldering techniques refer to application note #AN-994
Max R
DS(on)
for D
2
Pak and TO-262 (SMD) devices.
TO-220 device will have an Rth value of 0.45°C/W.
All AC and DC test condition based on old Package limitation current = 75A.
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min.
Typ.
Max.
Units
Conditions
V
(BR)DSS
Drain-to-Source Breakdown Voltage
40
––– –––
V V
GS
= 0V, I
D
= 250µA
V
(BR)DSS
/
T
J
Breakdown Voltage Temp. Coefficient
––– 0.031 ––– V/°C Reference to 25°C, I
D
= 1mA
R
DS(on)
SMD
Static Drain-to-Source On-Resistance
–––
1.5
2.0
V
GS
= 10V, I
D
= 75A
R
DS(on)
TO-220 Static Drain-to-Source On-Resistance
–––
1.8
2.3
V
GS
= 10V, I
D
= 75A
V
GS(th)
Gate Threshold Voltage
2.0
–––
4.0
V V
DS
= V
GS
, I
D
= 250µA
gfs
Forward Trans conductance
130
––– –––
S V
DS
= 10V, I
D
= 75A
I
DSS
Drain-to-Source Leakage Current
––– ––– 20
µA
V
DS
=40 V, V
GS
= 0V
––– ––– 250
V
DS
=40V,V
GS
= 0V,T
J
=125°C
I
GSS
Gate-to-Source Forward Leakage
–––
––– 200
nA
V
GS
= 20V
Gate-to-Source Reverse Leakage
–––
––– -200
V
GS
= -20V
Dynamic Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Q
g
Total Gate Charge
–––
160 240
nC
I
D
= 75A
Q
gs
Gate-to-Source Charge
–––
41
62
V
DS
= 32V
Q
gd
Gate-to-Drain Charge
–––
66
99
V
GS
= 10V
t
d(on)
Turn-On Delay Time
–––
13
–––
ns
V
DD
= 20V
t
r
Rise Time
–––
120 –––
I
D
= 75A
t
d(off)
Turn-Off Delay Time
–––
130 –––
R
G
= 2.5
t
f
Fall Time
–––
130 –––
V
GS
= 10V
L
D
Internal Drain Inductance
–––
4.5
–––
nH
Between lead,
6mm (0.25in.)
L
S
Internal Source Inductance
–––
7.5
–––
from package
and center of die contact
C
iss
Input Capacitance
––– 6450 –––
pF
V
GS
= 0V
C
oss
Output Capacitance
––– 1690 –––
V
DS
= 25V
C
rss
Reverse Transfer Capacitance
–––
840 –––
ƒ = 1.0MHz, See Fig. 5
C
oss
Output Capacitance
––– 5350 –––
V
GS
= 0V, V
DS
= 1.0V ƒ = 1.0MHz
C
oss
Output Capacitance
––– 1520 –––
V
GS
= 0V, V
DS
= 32V ƒ = 1.0MHz
C
oss eff.
Effective Output Capacitance
––– 2210 –––
V
GS
= 0V, V
DS
= 0V to 32V
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
I
S
Continuous Source Current
––– ––– 270
A
MOSFET symbol
(Body Diode)
showing the
I
SM
Pulsed Source Current
––– ––– 1080
integral reverse
(Body Diode)
p-n junction diode.
V
SD
Diode Forward Voltage
–––
––– 1.3
V T
J
= 25°C,I
S
= 75A,V
GS
= 0V
t
rr
Reverse Recovery Time
–––
56
84
ns T
J
= 25°C ,I
F
= 75A, V
DD
= 20V
Q
rr
Reverse Recovery Charge
–––
67
100
nC di/dt = 100A/µs
t
on
Forward Turn-On Time
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
m
AUIRF2804/S/L
3
2015-9-30
Fig. 2 Typical Output Characteristics
Fig. 3
Typical Transfer Characteristics
Fig. 4 Typical Forward Transconductance
vs. Drain Current
Fig. 1 Typical Output Characteristics
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
4.5V
20µs PULSE WIDTH
Tj = 25°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
4.5V
20µs PULSE WIDTH
Tj = 175°C
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
4.0
5.0
6.0
7.0
8.0
9.0
VGS, Gate-to-Source Voltage (V)
1
10
100
1000
I D
, D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
)
TJ = 25°C
TJ = 175°C
VDS = 10V
20µs PULSE WIDTH
0
40
80
120
160
200
ID, Drain-to-Source Current (A)
0
50
100
150
200
250
300
G
fs
, F
or
w
ar
d
T
ra
ns
co
nd
uc
ta
nc
e
(
S
)
TJ = 25°C
TJ = 175°C
VDS = 10V
20µs PULSE WIDTH
AUIRF2804/S/L
4
2015-9-30
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 8. Maximum Safe Operating Area
Fig. 7 Typical Source-to-Drain Diode
Forward Voltage
1
10
100
VDS, Drain-to-Source Voltage (V)
0
2000
4000
6000
8000
10000
12000
C
, C
ap
ac
ita
nc
e
(p
F
)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0
40
80
120
160
200
240
QG Total Gate Charge (nC)
0
4
8
12
16
20
V
G
S
, G
at
e-
to
-S
ou
rc
e
V
ol
ta
ge
(
V
)
VDS= 32V
VDS= 20V
VDS= 8.0V
ID= 75A
0.2
0.6
1.0
1.4
1.8
2.2
VSD, Source-toDrain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
I S
D
, R
ev
er
se
D
ra
in
C
ur
re
nt
(
A
)
TJ = 25°C
TJ = 175°C
VGS = 0V
0
1
10
100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
I D
,
D
ra
in
-t
o-
S
ou
rc
e
C
ur
re
nt
(
A
)
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
Tc = 25°C
Tj = 175°C
Single Pulse
AUIRF2804/S/L
5
2015-9-30
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current vs. Case Temperature
25
50
75
100
125
150
175
TC , Case Temperature (°C)
0
50
100
150
200
250
300
I D
,
D
ra
in
C
ur
re
nt
(
A
)
Limited By Package
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
R
D
S
(o
n)
,
D
ra
in
-t
o-
S
ou
rc
e
O
n
R
es
is
ta
nc
e
(
N
or
m
al
iz
ed
)
ID = 75A
VGS = 10V
1E-008
1E-007
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
T
he
rm
al
R
es
po
ns
e
(
Z
th
JC
)
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
AUIRF2804/S/L
6
2015-9-30
Fig 14.
Threshold Voltage vs. Temperature
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12a. Unclamped Inductive Test Circuit
Fig 12b. Unclamped Inductive Waveforms
R G
IAS
0.01
tp
D.U.T
L
VDS
+
- VDD
DRIVER
A
15V
20V
tp
V
(BR)DSS
I
AS
Fig 13b. Gate Charge Test Circuit
Fig 13a. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
200
400
600
800
1000
1200
E
A
S
,
S
in
gl
e
P
ul
se
A
va
la
nc
he
E
ne
rg
y
(m
J)
ID
TOP 31A
53A
BOTTOM 75A
-75 -50 -25
0
25
50
75 100 125 150 175
TJ , Temperature ( °C )
1.0
2.0
3.0
4.0
V
G
S
(t
h)
G
at
e
th
re
sh
ol
d
V
ol
ta
ge
(
V
)
ID = 250µA
AUIRF2804/S/L
7
2015-9-30
Fig 15. Typical Avalanche Current vs. Pulse width
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at
www.infineon.com
)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of T
jmax
. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as T
jmax
is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
4. P
D (ave)
= Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during
avalanche).
6. I
av
= Allowable avalanche current.
7.
T
=
Allowable rise in junction temperature, not to exceed
T
jmax
(assumed as
25°C in Figure 15, 16).
t
av =
Average time in avalanche.
D = Duty cycle in avalanche = t
av
·f
Z
thJC
(D, t
av
) = Transient thermal resistance, see Figures 13)
P
D (ave)
= 1/2 ( 1.3·BV·I
av
) =
T/ Z
thJC
I
av
= 2
T/ [1.3·BV·Z
th
]
E
AS (AR)
= P
D (ave)
·t
av
Fig 16. Maximum Avalanche Energy
vs. Temperature
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
1
10
100
1000
A
va
la
nc
he
C
ur
re
nt
(
A
)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses
0.01
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
600
E
A
R
,
A
va
la
nc
he
E
ne
rg
y
(m
J)
TOP Single Pulse
BOTTOM 10% Duty Cycle
ID = 75A
AUIRF2804/S/L
8
2015-9-30
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
AUIRF2804/S/L
9
2015-9-30
TO-220AB package is not recommended for Surface Mount Application.
TO-220AB Part Marking Information
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUF2804
Lot Code
Part Number
IR Logo
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
AUIRF2804/S/L
10
2015-9-30
D
2
Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))
YWWA
XX
XX
Date Code
Y= Year
WW= Work Week
AUF2804S
Lot Code
Part Number
IR Logo
D
2
Pak (TO-263AB) Part Marking Information