AUIRF1404 Product Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf1404-html.html
background image

 

AUIRF1404 

V

DSS 

40V 

R

DS(on)

   typ. 

3.5m



              max. 

4.0m



I

D (Silicon Limited) 

202A 

I

D (Package Limited) 

160A  

Features 

  Advanced Planar Technology 

 Low 

On-Resistance 

  Dynamic dv/dt Rating 

  175°C Operating Temperature 
 Fast 

Switching 

  Fully Avalanche Rated 

  Repetitive Avalanche Allowed up to Tjmax 

  Lead-Free, RoHS Compliant 

  Automotive Qualified *  
Description 
Specifically designed for Automotive applications, this Stripe 
Planar design of HEXFET

®

 Power MOSFETs utilizes the latest 

processing techniques to achieve low on-resistance per silicon 
area. This benefit combined with the fast switching speed and 
ruggedized device design that HEXFET

®

 power MOSFETs are 

well known for, provides the designer with an extremely efficient 
and reliable device for use in Automotive and a wide variety of 
other applications. 

                          

2015-9-30 

HEXFET® is a registered trademark of Infineon. 
*Qualification standards can be found at 

www.infineon.com

 

 

AUTOMOTIVE GRADE 

Symbol Parameter 

Max. 

Units 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

202 

I

D

 @ T

C

 = 100°C 

Continuous Drain Current, V

GS

 @ 10V (Silicon Limited) 

143 

I

D

 @ T

C

 = 25°C 

Continuous Drain Current, V

GS

 @ 10V (Package Limited) 

160 

I

DM 

Pulsed Drain Current  808 

P

D

 @T

C

 = 25°C 

Maximum Power Dissipation   

333 

  

Linear Derating Factor 

2.2 

W/°C 

V

GS 

Gate-to-Source Voltage 

 ± 20 

E

AS  

Single Pulse Avalanche Energy (Thermally Limited)  620 

mJ  

I

AR 

Avalanche Current  

See Fig.15,16, 12a, 12b   

E

AR 

Repetitive Avalanche Energy  

 

mJ 

T

J  

Operating Junction and 

-55  to + 175 

 

T

STG 

Storage Temperature Range 

  

°C 

  

Soldering Temperature, for 10 seconds (1.6mm from case) 

300 

 

 

Mounting torque, 6-32 or M3 screw 

10 lbf•in (1.1N•m) 

   

dv/dt 

Peak Diode Recovery dv/dt 1.5 

V/ns 

Absolute Maximum Ratings 

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.   These are stress 
ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not 
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance 
and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless 
otherwise specified. 

Thermal Resistance  

Symbol Parameter 

Typ. 

Max. 

Units 

R

JC

  

Junction-to-Case  ––– 

0.45 

°C/W   

R

CS

 

Case-to-Sink, Flat, Greased Surface  

0.50 

––– 

R

JA

  

Junction-to-Ambient  

––– 

62 

TO-220AB 

AUIRF1404 

Base part number 

Package Type 

Standard Pack 

Form 

Quantity 

AUIRF1404 

TO-220 

Tube 

50 

AUIRF1404 

Orderable Part Number   

G D S 

Gate Drain Source 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf1404-html.html
background image

 

AUIRF1404 

 

2015-9-30 

Notes:

 Repetitive rating;  pulse width limited by max. junction temperature. (See fig. 11) 

  starting  T

J

 = 25°C, L = 85

H, R

G

 = 25

, I

AS

 = 121A, V

GS

 =10V. (See fig. 12) 

  I

SD

 

121A, di/dt 130A/µs, V

DD

 

V

(BR)DSS

, T

J

 

 175°C. 

 Pulse width 

400µs; duty cycle  2%. 

  C

oss

 eff.  is a fixed capacitance that gives the same charging time as C

oss

 while V

DS

 is rising from 0 to 80% V

DSS

  Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 160A.  

 

R

 

 is measured at T

J

 of approximately 90°C.

 

 
 

 

Static @ T

J

 = 25°C (unless otherwise specified) 

  

Parameter Min. 

Typ. 

Max. 

Units 

Conditions 

V

(BR)DSS 

Drain-to-Source Breakdown Voltage 

40 

–––  ––– 

V  V

GS

 = 0V, I

D

 = 250µA 

V

(BR)DSS

/

T

J  

Breakdown Voltage Temp. Coefficient 

–––  0.039  –––  V/°C  Reference to 25°C, I

D

 = 1mA  

R

DS(on) 

  

Static Drain-to-Source On-Resistance   

––– 

3.5 

4.0 

m

 V

GS

 = 10V, I

D

 = 121A  

V

GS(th) 

Gate Threshold Voltage 

2.0  

––– 

4.0 

V  V

DS

 = V

GS

, I

D

 = 250µA 

gfs 

Forward Trans conductance 

76 

–––  ––– 

S  V

DS

 = 25V, I

D

 = 121A 

I

DSS 

  

Drain-to-Source Leakage Current   

––– –––  20 

µA 

V

DS

 =40 V, V

GS

 = 0V 

––– ––– 250 

V

DS

 =32V,V

GS

 = 0V,T

J

 =150°C 

I

GSS 

  

Gate-to-Source Forward Leakage 

––– 

–––  100 

nA 

V

GS

 = 20V 

Gate-to-Source Reverse Leakage 

––– 

–––  -100 

V

GS

 = -20V 

Dynamic  Electrical Characteristics @ T

J

 = 25°C (unless otherwise specified) 

Q

Total Gate Charge  

––– 

131  196 

nC  

I

D

 = 121A 

Q

gs 

Gate-to-Source Charge 

––– 

36 

––– 

V

DS

 = 32V 

Q

gd 

Gate-to-Drain Charge 

––– 

37 

56 

V

GS

 = 10V  

t

d(on) 

Turn-On Delay Time 

––– 

17 

––– 

ns 

V

DD

 = 20V 

t

Rise Time 

––– 

190  ––– 

I

D

 = 121A 

t

d(off) 

Turn-Off Delay Time 

––– 

46 

––– 

R

G

= 2.5



t

Fall Time 

––– 

33 

––– 

R

= 0.2



L

D

 

Internal Drain Inductance 

––– 

4.5 

––– 

 nH  

Between lead, 
6mm (0.25in.) 

L

S

 

Internal Source Inductance 

––– 

7.5 

––– 

from package 
and center of die contact 

C

iss 

Input Capacitance 

–––  5669  ––– 

pF  

V

GS

 = 0V 

C

oss 

Output Capacitance 

–––  1659  ––– 

V

DS

 = 25V 

C

rss 

Reverse Transfer Capacitance 

––– 

223  ––– 

ƒ = 1.0MHz, See Fig. 5 

C

oss 

Output Capacitance 

–––  6205  ––– 

V

GS

 = 0V, V

DS

 = 1.0V ƒ = 1.0MHz 

C

oss 

Output Capacitance 

–––  1467  ––– 

V

GS

 = 0V, V

DS

 = 32V ƒ = 1.0MHz 

C

oss eff. 

Effective Output Capacitance  

––– 2249 ––– 

V

GS

 = 0V, V

DS

 = 0V to 32V  

Diode Characteristics  

  

        Parameter 

Min.  Typ.  Max.  Units 

Conditions 

I

  

Continuous Source Current  

––– ––– 202 

MOSFET symbol 

(Body Diode) 

showing  the 

I

SM 

  

Pulsed Source Current 

––– ––– 808 

integral reverse 

(Body Diode)

p-n junction diode. 

V

SD 

Diode Forward Voltage 

––– 

––– 

1.5 

V  T

J

 = 25°C,I

= 121A,V

GS

 = 0V 

t

rr  

Reverse Recovery Time  

––– 

78 

117 

ns   T

J

 = 25°C ,I

F

 = 121A 

Q

rr  

Reverse Recovery Charge  

––– 

163  245 

nC    di/dt = 100A/µs 

t

on 

Forward Turn-On Time 

Intrinsic turn-on time is negligible (turn-on is dominated by L

S

+L

D

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf1404-html.html
background image

 

AUIRF1404 

 

2015-9-30 

Fig. 2 Typical Output Characteristics 

Fig. 3 

Typical Transfer Characteristics

 

 

Fig. 4 Normalized On-Resistance 

vs. Temperature 

Fig. 1 Typical Output Characteristics 

 1

 10

 100

 1000

0.1

 1

 10

 100

 

20µs PULSE WIDTH

T  = 25 C

J

°

 

TOP

BOTTOM

VGS

15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

4.5V

V     , Drain-to-Source Voltage (V)

I   

,  

D

ra

in

-to

-S

o

u

rc

e

 C

u

rr

e

n

t (A

)

DS

D

4.5V

 1

 10

 100

 1000

0.1

 1

 10

 100

 

20µs PULSE WIDTH

T  = 175 C

J

°

 

TOP

BOTTOM

VGS

15V

10V

8.0V

7.0V

6.0V

5.5V

5.0V

4.5V

V     , Drain-to-Source Voltage (V)

I   ,  D

ra

in

-to

-S

o

u

rc

e

 C

u

rr

e

n

t (

A

)

DS

D

4.5V

 10

 100

 1000

4

5

6

7

8

9

10

11

12

 

V      = 25V
20µs PULSE WIDTH

DS

V     , Gate-to-Source Voltage (V)

I   

,  D

ra

in

-to

-S

o

u

rc

e

 C

u

rr

e

n

t (A

)

GS

D

 

T  = 25  C

J

°

 

T  = 175  C

J

°

-60 -40 -20 0 20 40 60 80 100 120 140 160 180

0.0

0.5

1.0

1.5

2.0

2.5

T  , Junction Temperature (  C)

R

       

     ,

 D

ra

in

-to

-S

o

u

rc

e

 O

n

 R

e

sis

ta

n

ce

(N

or

m

a

liz

ed)

J

DS

(o

n

)

°

 

 

V

=

I =

GS

D

10V

202A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf1404-html.html
background image

 

AUIRF1404 

 

2015-9-30 

Fig 5.  Typical Capacitance vs.  
 

      Drain-to-Source Voltage

 

Fig 6.  Typical Gate Charge vs. 
 

      Gate-to-Source Voltage

 

 

 

Fig 8.  Maximum Safe Operating Area  

Fig. 7 Typical Source-to-Drain Diode 

 Forward Voltage 

1

10

100

VDS, Drain-to-Source Voltage (V)

0

2000

4000

6000

8000

10000

C

, C

ap

ac

ita

nc

e(

pF

)

Coss

Crss

Ciss

VGS   = 0V,     f = 1 MHZ

Ciss  = Cgs + Cgd, Cds  SHORTED
Crss    = Cgd 
Coss   = Cds + Cgd

0

50

100

150

200

0

4

8

12

16

20

Q   , Total Gate Charge (nC)

V

   

  , 

G

a

te

-t

o

-S

o

u

rc

e

 V

o

lta

g

e

 (

V

)

G

GS

 

 

FOR TEST CIRCUIT

SEE FIGURE       

I =

D

13

121A

 

V

= 20V

DS

V

= 32V

DS

0.1

 1

 10

 100

 1000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

V     ,Source-to-Drain Voltage (V)

I  

   

, R

e

ve

rs

e

 D

ra

in

 C

u

rr

e

n

t (A

)

SD

SD

 

V      = 0 V 

GS

 

T  = 25  C

J

°

 

T  = 175  C

J

°

 1

 10

 100

 1000

 10000

 1

 10

 100

 

OPERATION IN THIS AREA LIMITED

BY R

DS(on)

 

 Single Pulse

 T

 T

= 175  C

= 25  C

°

°

J

C

V     , Drain-to-Source Voltage (V)

I   , D

ra

in

 C

ur

re

nt (

A

)

I   , D

ra

in

 C

ur

re

nt (

A

)

DS

D

 

10us

 

100us

 

1ms

 

10ms

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf1404-html.html
background image

 

AUIRF1404 

 

2015-9-30 

Fig 11.  Maximum Effective Transient Thermal Impedance, Junction-to-Case  

Fig 9.  Maximum Drain Current vs. Case Temperature 

Fig 10a.  Switching Time Test Circuit 

Fig 10b.  Switching Time Waveforms 

25

50

75

100

125

150

175

 TC , Case Temperature (°C)

0

50

100

150

200

250

I D

,   

D

ra

in

 C

ur

re

nt

 (

A

)

Limited By Package

0.001

0.01

0.1

 1

0.00001

0.0001

0.001

0.01

0.1

 

Notes:

1. Duty factor D =

t   / t

2. Peak T = P

x  Z

+ T

1

2

J

DM

thJC

C

 

P

t

t

DM

1

2

t  , Rectangular Pulse Duration (sec)

Th

erm

al R

esp

on

se

(Z  

    

  )

1

th

JC

0.01

0.02

0.05

0.10

0.20

D = 0.50

 

SINGLE PULSE

(THERMAL RESPONSE)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf1404-html.html
background image

 

AUIRF1404 

 

2015-9-30 

 

Fig 14.   

Threshold Voltage vs. Temperature 

Fig 12c. Maximum Avalanche Energy 

 vs. Drain Current 

Fig 12a.  Unclamped Inductive Test Circuit 

Fig 12b.  Unclamped Inductive Waveforms 

R G

IAS

0.01

tp

D.U.T

L

VDS

+

- VDD

DRIVER

A

15V

20V

tp

V

(BR)DSS

I

AS

Fig 13b.  Gate Charge Test Circuit 

Fig 13a.   Gate Charge Waveform 

Vds

Vgs

Id

Vgs(th)

Qgs1 Qgs2

Qgd

Qgodr

25

50

75

100

125

150

175

0

300

600

900

1200

1500

Starting T  , Junction Temperature

(  C)

E     ,

 S

ingl

e P

ul

se Av

ala

nc

he Ener

gy (

m

J)

J

AS

°

 

ID

TOP

BOTTOM

49A 

101A 

121A 

-75

-50

-25

0

25

50

75

100 125 150

TJ , Temperature ( °C )

1.0

2.0

3.0

4.0

-V

G

S

(t

h)

 G

at

th

re

sh

ol

V

ol

ta

ge

 (

V

)

ID = -250µA

 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf1404-html.html
background image

 

AUIRF1404 

 

2015-9-30 

 

Fig 15.  Typical Avalanche Current vs. Pulse width  

Notes on Repetitive Avalanche Curves , Figures 15, 16: 
(For further info, see AN-1005 at www.infineon.com) 
 
1.  Avalanche failures assumption:  
 

Purely a thermal phenomenon and failure occurs at a temperature far in  

 

excess of T

jmax

. This is validated for every part type. 

2.  Safe operation in Avalanche is allowed as long as T

jmax

 is not exceeded. 

3.   Equation below based on circuit and waveforms shown in Figures 12a, 12b. 
4.   P

D (ave) 

= Average power dissipation per single avalanche pulse. 

5.   BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
 during 

avalanche). 

6.   I

av 

= Allowable avalanche current. 

7. 

T

 = 

Allowable rise in junction temperature, not to exceed

 

T

jmax 

(assumed as  

 

25°C in Figure 15, 16).  

 

t

av = 

Average time in avalanche. 

 

D = Duty cycle in avalanche =  t

av 

·f 

 

Z

thJC

(D, t

av

) = Transient thermal resistance, see Figures 13) 

 

P

D (ave)

 = 1/2 ( 1.3·BV·I

av

) = 

T/ Z

thJC

 

I

av

 = 2

T/ [1.3·BV·Z

th

E

AS (AR) 

= P

D (ave)

·t

av

 

Fig 16.  Maximum Avalanche Energy  

vs. Temperature 

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

tav (sec)

1

10

100

1000

A

va

la

nc

he

 C

ur

re

nt

 (

A

)

0.05

Duty Cycle = Single Pulse

0.10

Allowed avalanche Current vs 
avalanche pulsewidth, tav 
assuming 

 Tj = 25°C due to 

avalanche losses

0.01

25

50

75

100

125

150

175

Starting TJ , Junction Temperature (°C)

0

50

100

150

200

250

300

350

400

E

A

R

 , 

A

va

la

nc

he

 E

ne

rg

(m

J)

TOP          Single Pulse                
BOTTOM   10% Duty Cycle
ID = 121A

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf1404-html.html
background image

 

AUIRF1404 

 

2015-9-30 

 

Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf1404-html.html
background image

 

AUIRF1404 

 

2015-9-30 

 

 

TO-220AB  package is not recommended for Surface Mount Application. 

TO-220AB Part Marking Information 

YWWA 

XX    

    XX 

Date Code 

Y= Year 

WW= Work Week 

AUF1404 

Lot Code 

Part Number 

IR Logo 

TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/auirf1404-html.html
background image

 

AUIRF1404 

10 

 

2015-9-30 

 

Qualification Information  

Qualification Level 

Automotive 

(per AEC-Q101)  

Comments: This part number(s) passed Automotive qualification. Infineon’s  
Industrial and Consumer qualification level is granted by extension of the higher 
Automotive level. 

 Moisture Sensitivity Level   

TO-220AB 

N/A 

ESD 

Machine Model  

Class M4 (+/- 425V)

 

 

AEC-Q101-002 

Human Body Model  

Class H2 (+/- 4000V)

 

 

AEC-Q101-001 

Charged Device Model 

Class C5 (+/- 1125V)

 

 

AEC-Q101-005 

RoHS Compliant 

Yes 

Published by 
Infineon Technologies AG 
81726 München, Germany 

© 

Infineon Technologies AG 2015 

All Rights Reserved. 
 
IMPORTANT NOTICE
 
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics 
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any 
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and 
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third 
party.  
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this 
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of 
the product of Infineon Technologies in customer’s applications.  
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of 
customer’s technical departments to evaluate the suitability of the product for the intended application and the 
completeness of the product information given in this document with respect to such application.   
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest 
Infineon Technologies office (

www.infineon.com

). 

WARNINGS 
Due to technical requirements products may contain dangerous substances. For information on the types in question 
please contact your nearest Infineon Technologies office. 
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized 
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a 
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.  

Revision History  

Date Comments 

9/30/2015 



Updated datasheet with corporate template. 



Corrected typo on IDSS test condition on page 2. 



Updated Package outline on page 9. 

†  Highest passing voltage. 

Maker
Infineon Technologies
Datasheet PDF Download