MCP8063 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005257B-html.html
background image

 2014 Microchip Technology Inc.

DS20005257B-page 1

Features

• Automotive AEC-Q100 Qualified, PPAP available 

upon request 

• Position Sensorless BLDC Drivers (no Hall 

Sensor required)

• 180° Sinusoidal Drive for High Efficiency and Low 

Acoustic Noise

• Supports 2V to 14V Power Supplies
• Speed Control through Power Supply Modulation 

(PSM) and/or Pulse-Width Modulation (PWM)

• Built-In Frequency Generator (FG output signal)
• Built-In Lock-Up Protection and Automatic 

Recovery Circuit (external capacitor not 
necessary)

• Built-In Overcurrent Limitation (1.5A)
• Built-In Overvoltage Protection
• Built-In Thermal Shutdown Protection
• Thermally Enhanced 8-Lead 4 mm x 4 mm DFN 

Package with Exposed Pad

• 23 kHz PWM Output Frequency 
• No External Tuning Required
• Optimized for Fan Cooling Systems

Typical Applications

• Silent Notebook CPU/GPU Cooling Fans
• Air Ventilation System
• 12V 3-Phase BLDC Motors

Description

The MCP8063 device is a highly integrated 3-phase,
full-wave sensorless driver for brushless motors. It
features a 180° sinusoidal drive, high torque output,
and silent drive. Its integrated features and the wide
power supply range (2V to 14V) make the MCP8063 an
ideal candidate for a broad range of motor
characteristics, requiring no external tuning. Speed
control can be achieved through either power supply
modulation (PSM) or pulse-width modulation (PWM). 
Due to the compact packaging and minimum bill of
materials (power transistors integrated, no Hall sensor,
no external tuning), the MCP8063 is optimized for fan
applications that require high efficiency and low
acoustic noise at competitive costs. Frequency
generator output enables precision speed control in
closed-loop applications. The MCP8063 driver
includes a Lock-Up Protection mode, which turns off
the output current when the motor is under lock
condition, and an automatic recovery that enables the
fan to restart when the lock condition is removed.
Features such as motor overcurrent limitation and
thermal shutdown protection improve motor system
reliability without additional efforts from design
engineers.
The MCP8063 is available in a compact
thermally-enhanced 8-lead 4 mm x 4 mm DFN
package with exposed pad.

Package Types

MCP8063

 4x4 DFN*

* Includes Exposed Thermal Pad (EP); see 

Table 3-1

.

Top View

OUT1

V

BIAS

OUT2

V

DD

OUT3

1

2

3
4

8

7

6
5 GND

PWM

FG

EP

9

3-Phase Brushless Sinusoidal Sensorless Motor Driver

MCP8063

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005257B-html.html
background image

MCP8063

DS20005257B-page 2

 2014 Microchip Technology Inc.

Functional Block Diagram

Thermal 

Protection

V

BIAS

OUT1

OUT2

MCU

PWM

FG

OUT3

V

DD

Ou

tp

u

t D

ri

v

e

 C

ir

c

u

it

Motor Phase 

Detection Circuit

Overcurrent 

Limitation

PWM

Input

V

DD

Regulator

V

REF

GND

V

BIAS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005257B-html.html
background image

 2014 Microchip Technology Inc.

DS20005257B-page 3

MCP8063

Typical Application – Fan Motor Driver Using the MCP8063

Recommended External Components for Typical Application

Element

Type/Value

Comment

C

1

≥1 µF

Connect as close as possible to IC input pins

C

2

≥10 µF

Connect as close as possible to IC input pins

R

1

≥10 kΩ

Connect to V

logic

 on controller side

OUT1

FG

V

BIAS

OUT2

GND

V

DD

PWM

OUT3

1

2

3

4

5

6

7

8

MC

P

8

0

6

3

V

DD

PWM Input

(0.02-100 kHz)

C

1

C

2

R

1

V

LOGI C

(Controller Side)

9

EP

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005257B-html.html
background image

MCP8063

DS20005257B-page 4

 2014 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings†

Power Supply Voltage (V

DD_MAX

) .................... -0.7 to +16.0V

Maximum OUT1,2,3 Voltage (V

OUT_MAX

) ........ -0.7 to +16.0V

Maximum Output Current

(

1

(I

OUT_MAX

) ...........-1.7A to +1.7A

FG Maximum Output Voltage (V

FG_MAX

) ......... -0.7 to +16.0V

FG Maximum Output Current (I

FG_MAX

)

.....................5.0 mA

V

BIAS

 Maximum Voltage (V

BIAS_MAX

) ................ -0.7 to +4.0V

PWM Maximum Voltage (V

PWM_MAX

) ................ -0.7 to +4.0V

Maximum Junction Temperature (T

J

) .......................... +150°C

HBM ESD protection on all pins.......................................4 kV

† Notice:

 Stresses above those listed under “Maximum

Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational listings of this specification
is not implied. Exposure to maximum rating conditions
for extended periods may affect device reliability.

Note 1:

OUT1, OUT2, OUT3 (Continuous, 
100% duty cycle).

ELECTRICAL CHARACTERISTICS

Electrical Specifications:

 Unless otherwise specified, all limits are established for V

DD

= 12.0V, 

Temperature = +25°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Power Supply Voltage

V

DD

2

14

V

Power Supply Current

I

VDD


10


mA
mA

Rotation Mode

5

Lock-Protection Mode

OUT1/2/3
High Resistance

R

ON(H)

0.6

1

I

OUT

= 0.5A,  V

DD

= 3.3V to 14V

(

Note 1

)

OUT1/2/3
Low Resistance

R

ON(L)

0.6

1

I

OUT

= -0.5A, V

DD

= 3.3V to 14V

(

Note 1

)

OUT1/2/3
Total Resistance

R

ON(H+L)

1.2

2

I

OUT

= 0.5A,  V

DD

= 3.3V to 14V

(

Note 1

)

OUT1/2/3 Maximum 
Current Limitation

I

OUT_LIM

1.4

1.5

1.6

A

Note 1

V

BIAS

 Output Voltage

V

BIAS


3


V

V

DD

= 3.3V to 14V

V

DD

– 0.2

V

V

DD

< 3.3V

PWM Input Frequency

f

PWM

0.02

100

kHz

PWM Input H Level

V

PWM_H

0.8 × V

BIAS

3.6

V

PWM Input L Level

V

PWM_L

0

0.2 × V

BIAS

V

PWM Internal Pull-Up
Current

I

PWM_L

17

34

µA

PWM = GND, V

DD

= 3.3V to 14V

8

17

µA

PWM = GND, V

DD

< 3.3V

PWM Output
Frequency

f

PWM_O

23

kHz

FG Output Pin Low 
Level Voltage

V

OL_FG

0.25

V

I

FG

= -1  mA

FG Output Pin Leakage 
Current

I

LH_FG

10

µA

V

FG

= 14V

Lock Protection
Operating Time

T

RUN

0.5

s

Lock Protection
Waiting Time

T

WAIT

4.0

4.5

5.0

s

Note 1:

Minimum and maximum parameter is not production tested and is specified by design and validation.
Reference PCB, according to JEDEC standard EIA/JESD 51-9.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005257B-html.html
background image

 2014 Microchip Technology Inc.

DS20005257B-page 5

MCP8063

FIGURE 1-1:

Allowable Power Dissipation (P

D_MAX

) as a Function of Ambient Temperature (T

A

).

Thermal Shutdown

T

SD

170

°C

Thermal Shutdown 
Hysteresis

T

SD_HYS

25

°C

Input Over Voltage

V

OV

18.5

V

TEMPERATURE SPECIFICATIONS

Electrical Specifications:

 Unless otherwise specified, all limits are established for V

DD

= 12.0V, T

A

= +25°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges
Operating Temperature

T

OPR

-40

+125

°C

Storage Temperature Range

T

STG

-55

+150

°C

Package Thermal Resistances
Thermal Resistance, 8LD 4x4 DFN

JA

48

°C/W

JC

7

°C/W

Note 1:

Minimum and maximum parameter is not production tested and is specified by design and validation.
Derating applies for ambient temperatures outside the specified operating range (refer to 

Figure 1-1

).

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Specifications:

 Unless otherwise specified, all limits are established for V

DD

= 12.0V, 

Temperature = +25°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Note 1:

Minimum and maximum parameter is not production tested and is specified by design and validation.
Reference PCB, according to JEDEC standard EIA/JESD 51-9.

0

0.5

1

1.5

2

2.5

-10

0

10

20

30

40

50

60

70

80

90

100

11

0

120

130

140

150

P

DMA

X

(W)

T

A

(°C)

DFN-8

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005257B-html.html
background image

MCP8063

DS20005257B-page 6

 2014 Microchip Technology Inc.

2.0

TYPICAL PERFORMANCE CURVES

Note:

 Unless otherwise indicated, T

A

= +25°C,  V

DD

= 14V, OUT1, 2, 3 and PWM open.

FIGURE 2-1:

Oscillator Frequency 

Deviation vs. Temperature.

FIGURE 2-2:

Internal Regulated Voltage 

(V

BIAS

) vs. Temperature.

FIGURE 2-3:

Input (PWM) V

IL

 vs. 

Temperature.

FIGURE 2-4:

Input (PWM) V

IH

 vs. 

Temperature.

FIGURE 2-5:

Output R

ON

 Resistance vs. 

Temperature (V

DD

= 3.3V).

FIGURE 2-6:

Supply Current vs. 

Temperature.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

-2

0

2

4

6

8

10

12

14

16

-40 -25 -10

5

20 35 50 65 80 95 110 125

Oscillator Frequency

 Deviation 

(%

)

Temperature (C°)

V

DD

= 14V

V

DD

= 2V

0

0.5

1

1.5

2

2.5

3

3.5

-40 -25 -10

5

20

35

50

65

80

95 110 125

V

BIA

S

(V) 

Temperature (C°)

V

DD

= 2V

V

DD

= 3.3V

V

DD

= 14V

25

30

35

40

45

50

-40 -25 -10

5

20

35

50

65

80

95 110 125

PWM V

IL

(%

 of 

V

BI

A

S

)

Temperature (C°)

V

DD

= 14V

V

DD

= 2V

50

55

60

65

70

75

-40 -25 -10

5

20

35

50

65

80

95 110 125

PWM V

IH

(%

 of 

V

BI

A

S

)

Temperature (C°)

V

DD

= 14V

V

DD

= 2V

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-40 -25 -10

5

20

35

50

65

80

95 110 125

R

ON

)

Temperature (C°)

R

ON(H)

R

ON(L)

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

-40 -25 -10

5

20

35

50

65

80

95 110 125

I

VDD 

Current (mA)

Temperature (C°)

V

DD

= 14V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005257B-html.html
background image

 2014 Microchip Technology Inc.

DS20005257B-page 7

MCP8063

Note:

 Unless otherwise indicated, T

A

= +25°C,  V

DD

= 14V, OUT1, 2, 3 and PWM open.

FIGURE 2-7:

FG Output Pin Low Level 

Voltage (I

FG

= -1 mA).

FIGURE 2-8:

PWM Pull-Up Current vs. 

Temperature.

FIGURE 2-9:

Typical Output on Start-Up.

FIGURE 2-10:

Typical Outputs on Closed 

Loop.

FIGURE 2-11:

Typical Rotor Lock Situation.

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

-40 -25 -10

5

20 35 50 65 80 95 110 125

FG 

Pin Drive (V)

Temperature (C°)

V

DD

= 3.3V

V

DD

= 2V

-40

-35

-30

-25

-20

-15

-10

-5

0

-40 -25 -10

5

20

35

50

65

80

95 110 125

PWM 

Pull-Up Current (µA)

Temperature (C°)

V

DD

= 2V

V

DD

= 14V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005257B-html.html
background image

MCP8063

DS20005257B-page 8

 2014 Microchip Technology Inc.

3.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 3-1

.

TABLE 3-1:

MCP8063 PIN FUNCTION TABLE

MCP8063

Symbol

Type

Description

4x4 DFN

1

FG

O

Motor Speed Indication Output Pin

2

V

BIAS

P

Internal Regulator Output Pin (for decoupling only)

3

OUT1

O

Single-Phase Coil Output Pin

4

OUT2

O

Single-Phase Coil Output Pin

5

GND

P

Negative Voltage Supply Pin (Ground)

6

OUT3

O

Single-Phase Coil Output Pin

7

V

DD

P

Positive Voltage Supply for Motor Driver Pin

8

PWM

I

PWM Input Signal for Speed Control Pin

9

EP

P

Exposed pad is used for thermal dissipation. Connect to GND.

Legend:

I = Input; O = Output; P = Power

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005257B-html.html
background image

 2014 Microchip Technology Inc.

DS20005257B-page 9

MCP8063

4.0

FUNCTIONAL DESCRIPTION

The MCP8063 device generates a full-wave signal to
drive a 3-phase sensorless BLDC motor. High
efficiency and low power consumption are achieved
due to DMOS transistors and synchronous rectification
drive type. The current carrying order of the output is as
follows: OUT1 

 OUT2  OUT3.

4.1

Speed Control

The rotational speed of the motor can be controlled
either through the PWM digital input signal or by
varying the power supply (V

DD

). When the PWM signal

is “High” (or left open), the motor rotates at full speed.
When the PWM signal is “Low”, the motor is stopped
(and the driver outputs are set to high impedance). By
changing the PWM duty cycle, the speed can be
adjusted. Notice that the PWM frequency has no
special meaning for the motor speed and is
asynchronous with the activation of the output
transistors. Thus, the user has maximum freedom to
choose the PWM system frequency within a wide range
(from 20 Hz to 100 kHz), while the output transistor
activation always occurs at a fixed rate, which is
outside the range of audible frequencies. The typical
output frequency of MCP8063 is 23 kHz.

4.2

Frequency Generator Function

The Frequency Generator output is a “Hall-sensor
equivalent” digital output, giving information to an
external controller about the speed and phase of the
motor. The FG pin is an open-drain output, connecting
to a logical voltage level through an external pull-up
resistor. When a lock (or out-of-sync) situation is
detected by the driver, this output is set to high
impedance until the motor is restarted. Leave the pin
open when not used. The FG signal can be used to
compute the motor speed in rotations per minute
(RPM). Typically, for a four-pole BLDC fan (4P/6S), the
speed in RPMs is 30 x FG frequency (Hz).

EQUATION 1-1:

 

4.3

Lock-Up Protection and Automatic 
Restart

If the motor is stopped (blocked) or if it loses
synchronization with the driver, a lock-up protection
circuit detects this situation and ties the outputs to GND
in order to dissipate the remaining energy from the
rotor with a minimum of self heating. After a “waiting
time” (T

WAIT

), the lock-up protection is released and

normal operation resumes for a given time (T

RUN

). In

case the motor is still blocked, a new period of waiting
time is started. T

WAIT

 and T

RUN

 timings are fixed

internally, so that no external capacitor is needed.

4.4

Overcurrent Limitation

The motor peak current is limited by the driver to a fixed
value (defined internally), thus limiting the maximum
power dissipation in the coils.

4.5

Thermal Shutdown

The MCP8063 device has a thermal protection function
which detects when the die temperature exceeds
T

SD

= +170°C. When this temperature is reached, the

circuit enters Thermal Shutdown mode and the outputs
OUT1, OUT2 and OUT3 are tied to GND in order to
dissipate the remaining energy from the rotor with a
minimum of self-heating. Once the junction
temperature (T

SD

) has dropped below +145°C, the

normal operation resumes (the thermal detection
circuit has +25°C hysteresis function).

FIGURE 4-1:

Thermal Protection 

Hysteresis.

4.6

Internal Voltage Regulator

V

BIAS

 voltage is generated internally and is used to

supply internal logical blocks. The V

BIAS

 pin is used to

connect an external decoupling capacitor (1 µF or
higher). Notice that this pin is for IC internal use and is
not designed to supply DC current to external blocks.

4.7

Overvoltage Shutdown

The MCP8063 device has an overvoltage protection
function which detects when the V

DD

 voltage exceeds

V

OV

 = +18.5V. When this temperature is reached, the

circuit enters Thermal Shutdown mode, and outputs
OUT1, OUT2 and OUT3 are disabled (high impedance).

FG

720

P

S

-----------------------

Where:

P =

Total number of poles in the motor

S =

Total number of slots in the motor

=  Rotor speed RPM

T

SD

+145°C

Thermal Shutdown

+170°C

Normal operation

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005257B-html.html
background image

MCP8063

DS20005257B-page 10

 2014 Microchip Technology Inc.

5.0

PACKAGING INFORMATION

5.1

Package Marking Information

Legend:

XX...X

Customer-specific information

Y

Year code (last digit of calendar year)

YY

Year code (last 2 digits of calendar year)

WW

Week code (week of January 1 is week ‘01’)

NNN

Alphanumeric traceability code

  

Pb-free JEDEC

®

 designator for Matte Tin (Sn)

*

This package is Pb-free. The Pb-free JEDEC designator (     )
can be found on the outer packaging for this package.

Note

:

In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.

3

e

3

e

8-Lead DFN (4x4x0.9 mm)

Example

YYWW

NNN

XXXXXX

XXXXXX

PIN 1

PIN 1

8063

300EMD

1442

256

Maker
Microchip Technology Inc.
Datasheet PDF Download