MCP6H91/2/4 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25138B-html.html
background image

 2012 Microchip Technology Inc.

DS25138B-page 1

MCP6H91/2/4

Features:

• Input Offset Voltage: ±1 mV (typical)

• Quiescent Current:

 

2 mA  (typical)

• Common Mode Rejection Ratio: 98 dB (typical)

• Power Supply Rejection Ratio: 94 dB (typical)

• Rail-to-Rail Output

• Supply Voltage Range:

- Single-Supply Operation: 3.5V to 12V

- Dual-Supply Operation: ±1.75V to ±6V

• Gain Bandwidth Product: 10 MHz (typical)

• Slew Rate: 10 V/µs (typical)

• Unity Gain Stable

• Extended Temperature Range: -40°C to +125°C

• No Phase Reversal

Applications:

• Automotive Power Electronics

• Industrial Control Equipment

• Battery Powered Systems

• Medical Diagnostic Instruments

Design Aids:

• SPICE Macro Models 

• FilterLab

®

 Software

• MAPS (Microchip Advanced Part Selector)

• Analog Demonstration and Evaluation Boards

• Application Notes

Typical Application

Description:

Microchip’s MCP6H91/2/4 family of operational
amplifiers (op amps) has a wide supply voltage range
of 3.5V to 12V and rail-to-rail output operation. This
family is unity gain stable and has a gain bandwidth
product of 10 MHz (typical). These devices operate
with a single-supply voltage as high as 12V, while only
drawing 2 mA/amplifier (typical) of quiescent current.

The MCP6H91/2/4 family is offered in single
(MCP6H91), dual (MCP6H92) and quad (MCP6H94)
configurations. All devices are fully specified in
extended temperature range from -40°C to +125°C.

Package Types

Difference Amplifier

R

1

V

OUT

R

2

R

1

V

REF

R

2

V

DD

V

1

V

2

MCP6H91

* Includes Exposed Thermal Pad (EP); see 

Table 3-1

.

1

2

3

4

8

7

6

5

EP

9

V

DD

V

OUT

NC

NC

V

IN

+

V

IN

V

SS

NC

1

2

3

4

8

7

6

5

EP

9

V

OUTB

V

INB

V

INB

+

V

DD

V

INA

+

V

INA

V

SS

V

OUTA

V

INA

+

V

INA

V

SS

1

2

3

4

8

7

6

5

V

OUTA

V

DD

V

OUTB

V

INB

V

INB

+

V

IN

+

V

IN

V

SS

1

2

3

4

8

7

6

5

NC

NC

V

DD

V

OUT

NC

MCP6H91

SOIC

MCP6H92

SOIC

MCP6H91

2x3 TDFN

MCP6H92

2x3 TDFN

MCP6H94

SOIC, TSSOP

V

INA

+

V

INA

V

DD

1

2

3

4

14

13

12

11

V

OUTA

V

OUTD

V

IND

V

IND

+

V

SS

V

INB

+ 5

10 V

INC

+

V

INB

– 6

9

V

OUTB

7

8 V

OUTC

V

INC

10 MHz, 12V Op Amps

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25138B-html.html
background image

MCP6H91/2/4

DS25138B-page 2

 2012 Microchip Technology Inc.

NOTES:

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25138B-html.html
background image

 2012 Microchip Technology Inc.

DS25138B-page 3

MCP6H91/2/4

1.0

ELECTRICAL 
CHARACTERISTICS

1.1

Absolute Maximum Ratings †

V

DD

 – V

SS

.......................................................................13.2V

Current at Input Pins......................................................±2 mA

Analog Inputs (V

IN

+, V

IN

-)††.............V

SS

 – 1.0V to V

DD

  + 1.0V

All Other Inputs and Outputs ............V

SS

 – 0.3V to V

DD

  + 0.3V

Difference Input Voltage..........................................V

DD

 – V

SS

Output Short-Circuit Current...................................continuous

Current at Output and Supply Pins ..............................±65 mA

Storage Temperature.....................................-65°C to +150°C

Maximum Junction Temperature (T

J

)...........................+150°C

ESD protection on all pins (HBM; MM)

 2 kV; 200V

† Notice: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional
operation of the device at those or any other conditions
above those indicated in the operational listings of this
specification is not implied. Exposure to maximum
rating conditions for extended periods may affect
device reliability.

†† See 

Section 4.1.2, Input Voltage Limits

.

DC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, V

DD

= +3.5V to +12V, V

SS

= GND, T

A

= +25°C, 

V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2, V

L

= V

DD

/2 and R

L

= 10 k

to V

L

. (Refer to 

Figure 1-1

).

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Input Offset

Input Offset Voltage

V

OS

-4

±1

+4

mV

Input Offset Drift with Temperature

V

OS

/

T

A

±2.5

µV/°C T

A

= -40°C to +125°C

Power Supply Rejection Ratio

PSRR

75

94

dB

Input Bias Current and Impedance

Input Bias Current

I

B

10

pA

400

pA

T

A

= +85°C

9

25

nA

T

A

= +125°C

Input Offset Current

I

OS

±1

pA

Common Mode Input Impedance

Z

CM

10

13

||6

||pF

Differential Input Impedance

Z

DIFF

10

13

||6

||pF

Common Mode

Common Mode Input Voltage Range

V

CMR

V

SS

 – 0.3

V

DD

 – 2.5

V

Common Mode Rejection Ratio 

CMRR

75

91

dB

V

CM

= -0.3V to 1.0V, 

V

DD

= 3.5V

80

97

dB

V

CM

= -0.3V to 2.5V, 

V

DD

= 5V

80

98

dB

V

CM

= -0.3V to 9.5V, 

V

DD

= 12V

Open-Loop Gain

DC Open-Loop Gain (Large Signal)

A

OL

95

115

dB

0.2V < V

OUT

 <(V

DD 

– 0.2V)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25138B-html.html
background image

MCP6H91/2/4

DS25138B-page 4

 2012 Microchip Technology Inc.

 

Output

High-Level Output Voltage 

V

OH

3.490

3.495

V

V

DD

= 3.5V

0.5V input overdrive

4.985

4.993

V

V

DD

= 5V 

0.5V input overdrive

11.970

11.980

V

V

DD

= 12V 

0.5V input overdrive

Low-Level Output Voltage 

V

OL

0.005

0.010

V

V

DD

= 3.5V 

0.5 V input overdrive

0.007

0.015

V

V

DD

= 5V 

0.5 V input overdrive

0.020

0.030

V

V

DD

= 12V 

0.5 V input overdrive

Output Short-Circuit Current

I

SC

±35

mA

V

DD

= 3.5V

±41

mA

V

DD

= 5V

±41

mA

V

DD

= 12V

Power Supply

Supply Voltage

V

DD

3.5

12

V

Single-Supply operation

±1.75

±6

V

Dual-Supply operation

Quiescent Current per Amplifier

I

Q

2

2.8

mA

I

O

= 0,  V

CM

= V

DD

/4

AC ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, T

A

= +25°C, V

DD

= +3.5V to +12V, V

SS

= GND, 

V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2, V

L

= V

DD

/2, R

L

= 10 k

to V

L

 and C

L

= 60 pF. (Refer to 

Figure 1-1

).

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

AC Response

Gain Bandwidth Product

GBWP

10

MHz

Phase Margin

PM

60

°C

G = +1V/V

Slew Rate

SR

10

V/µs

Noise

Input Noise Voltage

E

ni

10

µVp-p

f = 0.1 Hz to 10 Hz

Input Noise Voltage Density

E

ni

23

nV/

Hz f = 1 kHz

12

nV/

Hz f = 10 kHz

Input Noise Current Density

i

ni

1.9

fA/

Hz

f = 1 kHz

DC ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise indicated, V

DD

= +3.5V to +12V, V

SS

= GND, T

A

= +25°C, 

V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2, V

L

= V

DD

/2 and R

L

= 10 k

to V

L

. (Refer to 

Figure 1-1

).

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25138B-html.html
background image

 2012 Microchip Technology Inc.

DS25138B-page 5

MCP6H91/2/4

1.2

Test Circuits

The circuit used for most DC and AC tests is shown in

Figure 1-1

. This circuit can independently set V

CM

 and

V

OUT

 (refer to 

Equation 1-1

). Note that V

CM

 is not the

circuit’s Common mode voltage ((V

P

+ V

M

)/2), and that

V

OST

 includes V

OS

 plus the effects (on the input offset

error, V

OST

) of temperature, CMRR, PSRR and A

OL

.

EQUATION 1-1:

 

FIGURE 1-1:

AC and DC Test Circuit for 

Most Specifications.

TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, V

DD

 = +3.5V to +12V and V

SS

= GND.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges

Operating Temperature Range

T

A

-40

+125

°C

Note 1

Storage Temperature Range

T

A

-65

+150

°C

Thermal Package Resistances

Thermal Resistance, 8L-2x3 TDFN

JA

52.5

°C/W

Thermal Resistance, 8L-SOIC

JA

149.5

°C/W

Thermal Resistance, 14L-SOIC

JA

95.3

°C/W

Thermal Resistance, 14L-TSSOP

JA

100

°C/W

Note 1: The internal junction temperature (T

J

) must not exceed the absolute maximum specification of +150°C.

G

DM

R

F

R

G

=

V

CM

V

P

V

DD

2

+

 2

=

V

OUT

V

DD

2

V

P

V

M

 V

OST

1

G

DM

+

+

+

=

Where:

G

DM

= Differential Mode Gain

(V/V)

V

CM

= Op Amp’s Common Mode

Input Voltage

(V)

V

OST

= Op Amp’s Total Input Offset

Voltage

(mV)

V

OST

V

IN 

V

IN+

=

V

DD

R

G

R

F

V

OUT

V

M

C

B2

C

L

R

L

V

L

C

B1

100 k

100 k

R

G

R

F

V

DD

/2

V

P

100 k

100 k

60 pF

10 k

1 µF

100 nF

V

IN–

V

IN+

C

F

6.8 pF

C

F

6.8 pF

MCP6H9X

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25138B-html.html
background image

MCP6H91/2/4

DS25138B-page 6

 2012 Microchip Technology Inc.

NOTES:

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25138B-html.html
background image

 2012 Microchip Technology Inc.

DS25138B-page 7

MCP6H91/2/4

2.0

TYPICAL PERFORMANCE CURVES

Note: Unless otherwise indicated, T

A

= +25°C,  V

DD

= +3.5V to +12V, V

SS

= GND, V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2,

V

L

= V

DD

/2, R

L

= 10 k

to V

L

 and C

L

= 60 pF.

 

FIGURE 2-1:

Input Offset Voltage.

 

FIGURE 2-2:

Input Offset Voltage Drift.

 

FIGURE 2-3:

Input Offset Voltage vs. 

Common Mode Input Voltage.

 

FIGURE 2-4:

 Input Offset Voltage vs. 

Common Mode Input Voltage.

 

FIGURE 2-5:

Input Offset Voltage vs. 

Common Mode Input Voltage.

FIGURE 2-6:

Input Offset Voltage vs. 

Output Voltage.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

0%

2%

4%

6%

8%

10%

12%

14%

-4.0 -3.0 -2.0 -1.0

0.0

1.0

2.0

3.0

4.0

Percentage of Occurences

Input Offset Voltage (mV)

2856 Samples

0%

5%

10%

15%

20%

25%

-24

-21

-18

-15

-12

-9

-6

-3

0

3

6

9

12

15

18

21

24

Percentage of Occurences

Input Offset Voltage Drift (μV/ C)

1630 Samples
T

A

= - 40 C to +125 C

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

Input 

Offset V

oltage (μV)

Common Mode Input Voltage (V)

T

A

= +125°C

T

A

= +85°C

T

A

= +25°C

T

A

= -40°C

V

DD

= 3.5V

Representative Part

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

-0.5 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Input 

Offset V

oltage (μV)

Common Mode Input Voltage (V)

T

A

= +125°C

T

A

= +85°C

T

A

= +25°C

T

A

= -40°C

V

DD

= 5V

Representative Part

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

-0.5

1.5

3.5

5.5

7.5

9.5

11.5

Input 

Offset V

oltage (μV)

Common Mode Input Voltage (V)

T

A

= +125°C

T

A

= +85°C

T

A

= +25°C

T

A

= -40°C

V

DD

= 12V

Representative Part

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

0

2

4

6

8

10

12

14

Input 

Offset V

oltage (μV)

Output Voltage (V)

V

DD

= 12V

V

DD

= 5V

V

DD

= 3.5V

Representative Part

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25138B-html.html
background image

MCP6H91/2/4

DS25138B-page 8

 2012 Microchip Technology Inc.

Note: Unless otherwise indicated, T

A

= +25°C,  V

DD

= +3.5V to +12V, V

SS

= GND, V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2,

V

L

= V

DD

/2, R

L

= 10 k

to V

L

 and C

L

= 60 pF.

 

FIGURE 2-7:

Input Offset Voltage vs. 

Power Supply Voltage.

FIGURE 2-8:

Input Noise Voltage Density 

vs. Frequency.

FIGURE 2-9:

Input Noise Voltage Density 

vs. Common Mode Input Voltage.

FIGURE 2-10:

CMRR, PSRR vs. 

Frequency.

FIGURE 2-11:

CMRR, PSRR vs. Ambient 

Temperature.

FIGURE 2-12:

Input Bias, Offset Currents 

vs. Ambient Temperature.

-1000

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

0

1

2

3

4

5

6

7

8

9

10 11 12

Input 

Offset V

oltage (μV)

Power Supply Voltage (V)

T

A

= +125°C

T

A

= +85°C

T

A

= +25°C

T

A

= -40°C

Representative Part

1

10

100

1,000

Input Noise 

V

oltage 

Density

 

(nV/√Hz)

Frequency (Hz)

1         10        100        1k

10k     100k     1M

0

2

4

6

8

10

12

14

16

18

20

-1

1

3

5

7

9

11

Input Noise 

V

oltage 

Density

 

(nV/√Hz)

Common Mode Input Voltage (V)

f = 10 kHz
V

DD

= 12 V

20

30

40

50

60

70

80

90

100

110

10

100

1000

10000

100000 1000000

CMRR, PSRR (dB)

Frequency (Hz)

10          100           1k            10k         100k        1M

CMRR

PSRR+

PSRR-

Representative Part

40

50

60

70

80

90

100

110

120

130

-50

-25

0

25

50

75

100

125

CMRR, PSRR (dB)

Ambient Temperature (°C)

PSRR

CMRR @ V

DD

= 12V

@ V

DD

= 5V

@ V

DD

= 3.5V

0.1

1

10

100

1000

10000

25

35

45

55

65

75

85

95

105

11

5

125

Input Bias 

and 

Offset Currents 

(A)

Ambient Temperature (°C)

Input Bias Current

Input Offset Current

V

DD

= 12 V

10n

1n

100p

10p

1p

0.1p

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25138B-html.html
background image

 2012 Microchip Technology Inc.

DS25138B-page 9

MCP6H91/2/4

Note: Unless otherwise indicated, T

A

= +25°C,  V

DD

= +3.5V to +12V, V

SS

= GND, V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2,

V

L

= V

DD

/2, R

L

= 10 k

to V

L

 and C

L

= 60 pF.

FIGURE 2-13:

Input Bias Current vs. 

Common Mode Input Voltage.

FIGURE 2-14:

Quiescent Current vs. 

Ambient Temperature.

FIGURE 2-15:

Quiescent Current vs. 

Power Supply Voltage.

FIGURE 2-16:

Open-Loop Gain, Phase vs. 

Frequency.

FIGURE 2-17:

DC Open-Loop Gain vs. 

Power Supply Voltage.

 

FIGURE 2-18:

DC Open-Loop Gain vs. 

Output Voltage Headroom.

1

10

100

1000

10000

100000

0

2

4

6

8

10

12

Input Bias 

Current 

(A)

Common Mode Input Voltage (V)

T

A

= +125°C

T

A

= +85°C

V

DD

= 12 V

100n

10n

1n

100p

10p

1p

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

-50

-25

0

25

50

75

100

125

Quiescent Current 

(mA/Amplifier)

Ambient Temperature (°C)

V

DD

= 12V

V

DD

= 5V

V

DD

= 3.5V

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

2

4

6

8

10

12

Quiescent Current 

(mA/Amplifier)

Power Supply Voltage (V)

T

A

= +125°C

T

A

= +85°C

T

A

= +25°C

T

A

= -40°C

-210

-180

-150

-120

-90

-60

-30

0

-20

0

20

40

60

80

100

120

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

Open Loop Phase 

(°)

Open Loop Gain (dB)

Frequency (Hz)

Open-Loop Gain

Open-Loop Phase

1    10   100    1k    10k   100k  1M 10M 100M  

80

100

120

140

160

180

3

5

7

9

11

13

DC Open-Loop Gain (dB)

Power Supply Voltage (V)

V

SS

+ 0.2V < V

OUT

< V

DD

- 0.2V

40

60

80

100

120

140

160

0.00

0.05

0.10

0.15

0.20

0.25

0.30

DC Open-Loop Gain (dB)

Output Voltage Headroom (V)

V

DD

- V

OH

or V

OL

- V

SS

V

DD

= 12V

V

DD

= 5V

V

DD

= 3.5V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/25138B-html.html
background image

MCP6H91/2/4

DS25138B-page 10

 2012 Microchip Technology Inc.

Note: Unless otherwise indicated, T

A

= +25°C,  V

DD

= +3.5V to +12V, V

SS

= GND, V

CM

= V

DD

/2 - 1.4V, V

OUT

 V

DD

/2,

V

L

= V

DD

/2, R

L

= 10 k

to V

L

 and C

L

= 60 pF.

FIGURE 2-19:

Channel-to-Channel 

Separation vs. Frequency (MCP6H92 only).

FIGURE 2-20:

Gain Bandwidth Product, 

Phase Margin vs. Ambient Temperature.

FIGURE 2-21:

Gain Bandwidth Product, 

Phase Margin vs. Ambient Temperature.

 

FIGURE 2-22:

Output Short Circuit Current 

vs. Power Supply Voltage.

 

FIGURE 2-23:

Output Voltage Swing vs. 

Frequency.

FIGURE 2-24:

Output Voltage Headroom 

vs. Output Current.

70

80

90

100

110

120

130

Channel to Channel 

Separation (dB)

Frequency (Hz)

100              1k             10k           100k           1M

Input Referred

0

20

40

60

80

100

120

140

160

180

0

2

4

6

8

10

12

14

-50

-25

0

25

50

75

100

125

Gain Bandw

idth Product 

(MHz)

Ambient Temperature (°C)

Gain Bandwidth Product

Phase Margin

V

DD

= 3.5V

Gain Bandwidth Product

Phase Margin

V

DD

= 3.5V

0

20

40

60

80

100

120

140

160

180

0

2

4

6

8

10

12

14

16

18

-50

-25

0

25

50

75

100

125

Gain Bandw

idth Product 

(MHz)

Ambient Temperature (°C)

Gain Bandwidth Product

Phase Margin

V

DD

= 12V

0

10

20

30

40

50

60

70

0

1

2

3

4

5

6

7

8

9

10 11 12

Output Short 

Circuit 

Current 

(mA)

Power Supply Voltage (V)

T

A

= +125°C

T

A

= +85°C

T

A

= +25°C

T

A

= -40°C

0.1

1

10

100

10000

100000

1000000

10000000

Output V

oltage 

Sw

ing (V

P

-P

)

Frequency (Hz)

V

DD

= 3.5V

V

DD

= 5V

10k                    100k                   1M                    10M

V

DD

= 12V

0.1

1

10

100

1000

0.01

0.1

1

10

100

Output V

oltage 

Headroom 

(mV)

Output Current (mA)

V

DD

- V

OH

V

SS

- V

OL

V

DD

= 12V

Maker
Microchip Technology Inc.
Datasheet PDF Download