MCP2551 High-Speed CAN Transceiver

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001667G-html.html
background image

 2001-2016 Microchip Technology Inc.

DS20001667G-page  1

MCP2551

Features 

• Supports 1 Mb/s operation

• Implements ISO-11898 standard physical layer 

requirements

• Suitable for 12V and 24V systems

• Externally-controlled slope for reduced RFI        

emissions

• Detection of ground fault (permanent Dominant) 

on TXD input

• Power-on Reset and voltage brown-out protection

• An unpowered node or brown-out event will not   

disturb the CAN bus

• Low current standby operation

• Protection against damage due to short-circuit    

conditions (positive or negative battery voltage)

• Protection against high-voltage transients

• Automatic thermal shutdown protection

• Up to 112 nodes can be connected

• High-noise immunity due to differential bus        

implementation

• Temperature ranges:

- Industrial (I): -40°C to +85°C

- Extended (E): -40°C to +125°C

Package Types   

Block Diagram 

R

S

CANH

CANL

V

REF

TXD

V

SS

V

DD

RXD

1

2

3

4

8

7

6

5

PDIP/SOIC

MCP

255

1

Thermal

Shutdown

V

DD

V

SS

CANH

CANL

TXD

R

S

RXD

V

REF

V

DD

Slope 

Control

Power-On

Reset

Reference

Voltage

Receiver

GND

0.5 V

DD

TXD

Dominant

Detect

Driver

Control

High-Speed CAN Transceiver

Not Recommended for New Designs

Please use MCP2561

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001667G-html.html
background image

MCP2551

DS20001667G-page  2

 2001-2016 Microchip Technology Inc.

NOTES:

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001667G-html.html
background image

 2001-2016 Microchip Technology Inc.

DS20001667G-page  3

MCP2551

1.0

DEVICE OVERVIEW

The MCP2551 is a high-speed CAN, fault-tolerant 
device that serves as the interface between a CAN 
protocol controller and the physical bus. The MCP2551
device provides differential transmit and receive 
capability for the CAN protocol controller, and is fully 
compatible with the ISO-11898 standard, including 24V 
requirements. It will operate at speeds of up to 1 Mb/s.

Typically, each node in a CAN system must have a 
device to convert the digital signals generated by a 
CAN controller to signals suitable for transmission over 
the bus cabling (differential output). It also provides a 
buffer between the CAN controller and the high-voltage 
spikes that can be generated on the CAN bus by 
outside sources (EMI, ESD, electrical transients, etc.).

1.1

Transmitter Function

The CAN bus has two states: Dominant and 
Recessive. A Dominant state occurs when the 
differential voltage between CANH and CANL is 
greater than a defined voltage (e.g.,1.2V). A Recessive 
state occurs when the differential voltage is less than a 
defined voltage (typically 0V). The Dominant and 
Recessive states correspond to the Low and High state 
of the TXD input pin, respectively. However, a 
Dominant state initiated by another CAN node will 
override a Recessive state on the CAN bus.

1.1.1

MAXIMUM NUMBER OF NODES

The MCP2551 CAN outputs will drive a minimum load 
of 45

allowing a maximum of 112 nodes to be 

connected (given a minimum differential input 
resistance of 20 k

 and a nominal termination resistor 

value of 120



1.2

Receiver Function

The RXD output pin reflects the differential bus voltage 
between CANH and CANL. The Low and High states of 
the RXD output pin correspond to the Dominant and 
Recessive states of the CAN bus, respectively.

1.3

Internal Protection

CANH and CANL are protected against battery short 
circuits and electrical transients that can occur on the 
CAN bus. This feature prevents destruction of the 
transmitter output stage during such a fault condition.

The device is further protected from excessive current 
loading by thermal shutdown circuitry that disables the 
output drivers when the junction temperature exceeds 
a nominal limit of 165°C. All other parts of the chip 
remain operational, and the chip temperature is low-
ered due to the decreased power dissipation in the 
transmitter outputs. This protection is essential to 
protect against bus line short-circuit-induced damage.

1.4

Operating Modes

The R

S

 pin allows three modes of operation to be 

selected:

• High-Speed

• Slope-Control

• Standby

These modes are summarized in 

Table 1-1

.

When in High-Speed or Slope-Control mode, the 
drivers for the CANH and CANL signals are internally 
regulated to provide controlled symmetry in order to 
minimize EMI emissions.

Additionally, the slope of the signal transitions on 
CANH and CANL can be controlled with a resistor 
connected from pin 8 (R

S

) to ground. The slope must 

be proportional to the current output at R

S

, which will 

further reduce EMI emissions.

1.4.1

HIGH-SPEED

High-Speed mode is selected by connecting the R

pin 

to V

SS

. In this mode, the transmitter output drivers have 

fast output rise and fall times to support high-speed 
CAN bus rates.

1.4.2

SLOPE-CONTROL

Slope-Control mode further reduces EMI by limiting the 
rise and fall times of CANH and CANL. The slope, or 
slew rate (SR), is controlled by connecting an external 
resistor (R

EXT

) between R

S

 and V

OL

 (usually ground). 

The slope is proportional to the current output at the R

S

pin. Since the current is primarily determined by the 
slope-control resistance value R

EXT

, a certain slew rate 

is achieved by applying a specific resistance. 

Figure 1-1

 illustrates typical slew rate values as a 

function of the slope-control resistance value. 

1.4.3

STANDBY MODE

The device may be placed in Standby or SLEEP mode 
by applying a high-level to the R

S

 pin. In SLEEP mode, 

the transmitter is switched off and the receiver operates 
at a lower current. The receive pin on the controller side 
(RXD) is still functional, but will operate at a slower 
rate. The attached microcontroller can monitor RXD for 
CAN bus activity and place the transceiver into normal 
operation via the R

S

 pin (at higher bus rates, the first 

CAN message may be lost).

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001667G-html.html
background image

MCP2551

DS20001667G-page  4

 2001-2016 Microchip Technology Inc.

TABLE 1-1:

MODES OF OPERATION 

TABLE 1-2:

TRANSCEIVER TRUTH TABLE 

FIGURE 1-1:

SLEW RATE VS. SLOPE-CONTROL RESISTANCE VALUE 

Mode

Current at R

s

 Pin

Resulting Voltage at R

S

 Pin

Standby

-I

RS

 < 10 µA

V

RS

 > 0.75 V

DD

Slope-Control

10 µA < -I

RS

 < 200 µA

0.4 V

DD

 < V

RS

 < 0.6 V

DD

High-Speed

-I

RS

 < 610 µA

0 < V

RS

 < 0.3V

DD

V

DD

V

RS

TXD

CANH

CANL

Bus State

(

 1

)

R

XD

(

 1

)

4.5V 

V

DD

 

 5.5V

V

RS

 < 0.75 V

DD

0

HIGH

LOW

Dominant

0

1 or floating

Not Driven

Not Driven

Recessive

1

V

RS

 > 0.75 V

DD

X

Not Driven 

Not Driven

Recessive

1

V

POR 

< V

DD

 < 4.5V

(See 

Note 3

)

V

RS

 < 0.75 V

DD

0

HIGH

LOW

Dominant

0

1 or floating

Not Driven

Not Driven

Recessive

1

V

RS

 > 0.75 V

DD

X

Not Driven 

Not Driven

Recessive

1

0 < V

DD

 < V

POR

X

X

Not Driven/

No Load

Not Driven/

No Load

High Impedance

X

Note 1:

If another bus node is transmitting a Dominant bit on the CAN bus, then RXD is a logic ‘0’.

2:

X = “don’t care”.

3:

Device drivers will function, although outputs are not ensured to meet the ISO-11898 specification.

0

5

10

15

20

25

10

20

30

40

49

60

70

76

90 100 110 120

Resistance (kŸ)

Slew Rate V/μs

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001667G-html.html
background image

 2001-2016 Microchip Technology Inc.

DS20001667G-page  5

MCP2551

1.5

TXD Permanent Dominant      
Detection 

If the MCP2551 detects an extended Low state on the 
TXD input, it will disable the CANH and CANL output 
drivers in order to prevent the corruption of data on the 
CAN bus. The drivers are disabled if TXD is Low for 
more than 1.25 ms (minimum). This implies a 
maximum bit time of 62.5 µs (16 kb/s bus rate), 
allowing up to 20 consecutive transmitted Dominant 
bits during a multiple bit error and error frame scenario. 
The drivers remain disabled as long as TXD remains 
Low. A rising edge on TXD will reset the timer logic and 
enable the CANH and CANL output drivers.

1.6

Power-on Reset

When the device is powered on, CANH and CANL 
remain in a high-impedance state until V

DD

 reaches the 

voltage level V

PORH

. In addition, CANH and CANL will 

remain in a high-impedance state if TXD is Low when 
V

DD

 reaches V

PORH

. CANH and CANL will become 

active only after TXD is asserted High. Once powered 
on, CANH and CANL will enter a high-impedance state 
if the voltage level at V

DD

 falls below V

PORL

, providing 

voltage brown-out protection during normal operation.

1.7

Pin Descriptions

The 8-pin pinout is listed in 

Table 1-3

TABLE 1-3:

MCP2551 PINOUT

 

1.7.1

TRANSMITTER DATA INPUT (TXD)

TXD is a TTL-compatible input pin. The data on this pin 
is driven out on the CANH and CANL differential output 
pins. It is usually connected to the transmitter data 
output of the CAN controller device. When TXD is low, 
CANH and CANL are in the Dominant state. When TXD 
is high, CANH and CANL are in the Recessive state, 
provided that another CAN node is not driving the CAN 
bus with a Dominant state. TXD has an internal pull-up 
resistor (nominal 25 k

 to V

DD

).

1.7.2

GROUND SUPPLY (V

SS

)

Ground supply pin.

1.7.3

SUPPLY VOLTAGE (V

DD

)

Positive supply voltage pin.

1.7.4

RECEIVER DATA OUTPUT (RXD)

RXD is a CMOS-compatible output that drives high or 
low depending on the differential signals on the CANH 
and CANL pins and is usually connected to the receiver 
data input of the CAN controller device. RXD is High 
when the CAN bus is Recessive and Low in the 
Dominant state.

1.7.5

REFERENCE VOLTAGE (V

REF

)

Reference Voltage Output (defined as V

DD

/2). 

1.7.6

CAN LOW (CANL)

The CANL output drives the low side of the CAN 
differential bus. This pin is also tied internally to the 
receive input comparator.

1.7.7

CAN HIGH (CANH)

The CANH output drives the high side of the CAN 
differential bus. This pin is also tied internally to the 
receive input comparator.

1.7.8

SLOPE RESISTOR INPUT (R

S

)

The R

S

 pin is used to select High-Speed, Slope-Control 

or Standby modes via an external biasing resistor. 

Pin 

Number

Pin 

Name

Pin Function

1

TXD

Transmit Data Input

2

V

SS

Ground

3

V

DD

Supply Voltage

4

RXD

Receive Data Output

5

V

REF

Reference Output Voltage

6

CANL

CAN Low-Level Voltage I/O

7

CANH

CAN High-Level Voltage I/O

8

R

S

Slope-Control Input

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001667G-html.html
background image

MCP2551

DS20001667G-page  6

 2001-2016 Microchip Technology Inc.

NOTES:

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001667G-html.html
background image

 2001-2016 Microchip Technology Inc.

DS20001667G-page  7

MCP2551

2.0

ELECTRICAL 
CHARACTERISTICS

2.1

Terms and Definitions

A number of terms are defined in ISO-11898 that are 
used to describe the electrical characteristics of a CAN 
transceiver device. These terms and definitions are 
summarized in this section.

2.1.1

BUS VOLTAGE

V

CANL

 and V

CANH

 denote the voltages of the bus line 

wires CANL and CANH relative to ground of each 
individual CAN node.

2.1.2

COMMON MODE BUS VOLTAGE 
RANGE

Boundary voltage levels of V

CANL

 and V

CANH

 with 

respect to ground, for which proper operation will occur, 
if up to the maximum number of CAN nodes are 
connected to the bus.

2.1.3

DIFFERENTIAL INTERNAL 
CAPACITANCE, C

DIFF

 

(OF A CAN NODE)

Capacitance seen between CANL and CANH during 
the Recessive state when the CAN node is 
disconnected from the bus (see 

Figure 2-1

).

2.1.4

DIFFERENTIAL INTERNAL 
RESISTANCE, R

DIFF

 

(OF A CAN NODE)

Resistance seen between CANL and CANH during the 
Recessive state when the CAN node is disconnected 
from the bus (see 

Figure 2-1

).

2.1.5

DIFFERENTIAL VOLTAGE, V

DIFF

 

(OF CAN BUS)

Differential voltage of the two-wire CAN bus, value 
V

DIFF

 = V

CANH

 –  V

CANL

.

2.1.6

INTERNAL CAPACITANCE, C

IN

 

(OF A CAN NODE)

Capacitance seen between CANL (or CANH) and 
ground during the Recessive state when the CAN node 
is disconnected from the bus (see 

Figure 2-1

).

2.1.7

INTERNAL RESISTANCE, R

IN

 

(OF A CAN NODE)

Resistance seen between CANL (or CANH) and 
ground during the Recessive state when the CAN node 
is disconnected from the bus (see 

Figure 2-1

).

FIGURE 2-1:

PHYSICAL LAYER 
DEFINITIONS 

R

IN

R

IN

R

DIFF

C

IN

C

IN

C

DIFF

CANL

CANH

GROUND

ECU

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001667G-html.html
background image

MCP2551

DS20001667G-page  8

 2001-2016 Microchip Technology Inc.

Absolute Maximum Ratings†

V

DD

.............................................................................................................................................................................7.0V

DC Voltage at TXD, RXD, V

REF

 and V

S

............................................................................................ -0.3V to V

DD

 + 0.3V

DC Voltage at CANH, CANL (

Note 1

) .......................................................................................................... -42V to +42V

Transient Voltage on Pins 6 and 7 (

Note 2

) ............................................................................................. -250V to +250V

Storage temperature ...............................................................................................................................-55°C to +150°C

Operating ambient temperature ..............................................................................................................-40°C to +125°C

Virtual Junction Temperature, T

VJ

 (

Note 3

).............................................................................................-40°C to +150°C

Soldering temperature of leads (10 seconds) ....................................................................................................... +300°C

ESD protection on CANH and CANL pins (

Note 4

) ................................................................................................... 6 kV

ESD protection on all other pins (

Note 4

) .................................................................................................................. 4 kV

Note 1:Short-circuit applied when TXD is High and Low.

2: In accordance with ISO-7637.

3: In accordance with IEC 60747-1.

4: Classification A: Human Body Model.

† NOTICE: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This 
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in 
the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods 
may affect device reliability.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001667G-html.html
background image

 2001-2016 Microchip Technology Inc.

DS20001667G-page  9

MCP2551

 

2.2

DC Characteristics 

DC Specifications 

Electrical Characteristics:
Industrial (I):

T

AMB

 = -40°C to +85°C  V

DD

 = 4.5V to 5.5V

Extended (E): T

AMB

 = -40°C to +125°C V

DD

 = 4.5V to 5.5V

Param

No.

Sym

Characteristic

Min

Max

Units

Conditions

Supply

D1

I

DD

Supply Current

75

mA

Dominant; V

TXD

 = 0.8V; V

DD

D2

10

mA

Recessive; V

TXD

 = +2V;

R

S

 = 47 kW

D3

365

µA

-40°C 

 T

AMB

 

 +85°C, Standby; 

(

Note 2

)

465

µA

-40°C 

 T

AMB

 

 +125°C, 

Standby; (

Note 2

)

D4

V

PORH

High-level of the Power-on 
Reset comparator

3.8

4.3

V

CANH, CANL outputs are active 
when V

DD

 > V

PORH

D5

V

PORL

Low-level of the Power-on 
Reset comparator

3.4

4.0

V

CANH, CANL outputs are not 
active when V

DD

 < V

PORL

D6

V

PORD

Hysteresis of Power-on 
Reset comparator

0.3

0.8

V

Note 1

Bus Line (CANH; CANL) Transmitter

D7

V

CANH(r);

V

CANL(r)

CANH, CANL Recessive 
bus voltage

2.0

3.0

V

V

TXD 

= V

DD

; no load.

D8

I

O

(

CANH

)(reces)

I

O

(

CANL

)(reces)

Recessive output current

-2

+2

mA

-2V < V(

CAHL

,

CANH

) < +7V,

0V <V

DD

 < 5.5V

D9

-10

+10

mA

-5V < V(

CANL

,

CANH

) < +40V,

0V <V

DD

 < 5.5V

D10

V

O

(

CANH

)

CANH Dominant 

output voltage

2.75

4.5

V

V

TXD

 = 0.8V

D11

V

O

(

CANL

)

CANL Dominant 

output voltage

0.5

2.25

V

V

TXD

 = 0.8V

D12

V

DIFF

(r)(o)

Recessive differential 

output voltage

-500

+50

mV

V

TXD

 = 2V; no load

D13

V

DIFF

(d)(o)

Dominant differential 

output voltage

1.5

3.0

V

V

TXD

 = 0.8V; V

DD

 = 5V

40W < R

L

 < 60W (

Note 2

)

D14

I

O

(SC)(

CANH

)

CANH short-circuit 

output current

-200

mA

V

CANH

 = -5V

D15

-100 

(typical)

mA

V

CANH

 = -40V, +40V. (

Note 1

)

D16

I

O

(SC)(

CANL

)l

CANL short-circuit 

output current

200

mA

V

CANL

 = -40V, +40V. (

Note 1

)

D17

V

DIFF

(r)(i)

Recessive differential 

input voltage

-1.0

+0.5

V

-2V < V(

CANL

CANH

) < +7V  

(

Note 3

)

-1.0

+0.4

V

-12V < V(

CANL

CANH

) < +12V 

(

Note 3

)

Note 1:

This parameter is periodically sampled and not 100% tested.

2:

I

TXD

 = I

RXD

 = I

VREF

 = 0 mA; 0V < V

CANL

 < V

DD

; 0V < V

CANH

 < V

DD

; V

RS

 = V

DD.

3:

This is valid for the receiver in all modes; High-speed, Slope-control and Standby.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20001667G-html.html
background image

MCP2551

DS20001667G-page  10

 2001-2016 Microchip Technology Inc.

Bus Line (CANH; CANL) Receiver: [TXD = 2V; pins 6 and 7 externally driven]

D18

V

DIFF

(d)(i)

Dominant differential 

input voltage

0.9

5.0

V

 -2V < V(

CANL

CANH

) < +7V 

(

Note 3

)

1.0

5.0

V

 -12V < V(

CANL

CANH

) < +12V 

(

Note 3

)

D19

V

DIFF

(h)(i)

Differential input hysteresis

100

200

mV

See 

Figure 2-3

 (

Note 1

)

D20

R

IN

CANH, CANL Common-
mode input resistance

5

50

kW

D21

R

IN

(d)

Deviation between CANH 
and CANL Common-mode 
input resistance

-3

+3

%

V

CANH

 = V

CANL 

Bus Line (CANH; CANL) Receiver: [TXD = 2V; pins 6 and 7 externally driven]

D22

R

DIFF

Differential input resistance

20

100

kW

D24

I

LI

CANH, CANL input leakage

current

150

µA

V

DD

 < V

POR

;

V

CANH

 = V

CANL 

= +5V

Transmitter Data Input (TXD)

D25

V

IH

High-level input voltage

2.0

V

DD

V

Output Recessive

D26

V

IL

Low-level input voltage

V

SS

+0.8

V

Output Dominant

D27

I

IH

High-level input current

-1

+1

µA

V

TXD

 = V

DD

D28

I

IL

Low-level input current

-100

-400

µA

V

TXD

 = 0V

Receiver Data Output (RXD)

D31

V

OH

High-level output voltage

0.7 V

D

D

V

I

OH

 = 8 mA

D32

V

OL

Low-level output voltage

0.8

V

I

OL

 = 8 mA

Voltage Reference Output (V

REF

)

D33

V

REF

Reference output voltage

0.45 V

DD

0.55 V

D

D

V

-50 µA < I

VREF

 < 50 µA

Standby/Slope-Control (R

S

 pin)

D34

V

STB

Input voltage for standby 
mode

0.75 V

DD

V

D35

I

SLOPE

Slope-control mode current

-10

-200

µA

D36

V

SLOPE

Slope-control mode voltage

0.4 V

D

D

0.6 V

DD

V

Thermal Shutdown

D37

T

J(sd)

Shutdown junction 

temperature

155

180

o

C

Note 1

D38

T

J(h)

Shutdown temperature 
hysteresis

20

30

o

C

 -12V < V(

CANL

CANH

) < +12V 

(

Note 3

)

2.2

DC Characteristics (Continued)

DC Specifications (Continued)

Electrical Characteristics:
Industrial (I):

T

AMB

 = -40°C to +85°C  V

DD

 = 4.5V to 5.5V

Extended (E): T

AMB

 = -40°C to +125°C V

DD

 = 4.5V to 5.5V

Param

No.

Sym

Characteristic

Min

Max

Units

Conditions

Note 1:

This parameter is periodically sampled and not 100% tested.

2:

I

TXD

 = I

RXD

 = I

VREF

 = 0 mA; 0V < V

CANL

 < V

DD

; 0V < V

CANH

 < V

DD

; V

RS

 = V

DD.

3:

This is valid for the receiver in all modes; High-speed, Slope-control and Standby.

Maker
Microchip Technology Inc.
Datasheet PDF Download