EMC1001 Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005411A-html.html
background image

 2015 Microchip Technology Inc.

DS20005411A-page 1

EMC1001

Features

• Self-Contained Internal Temperature Sensor

- +0.25°C resolution

- ±1.5°C Accuracy +40°C to +85°C

• SMBus Address Selected by External Resistor:

- Select 1 of 4 per package, 8 addresses 

available

• Maskable Interrupt using ALERT pin

• One-shot Command during Standby

• Low Power, 3.0V to 3.6V Supply

• 47 µA at 0.0625 Conversions per Second 

(Typical)

• 4.8 µA in Standby (Typical)

• SMBus 2.0 Compliant interface

• Programmable Temperature Conversion Rate

• Small 6-lead TSOT package

Applications

• Desktop and Notebook Computers

• Thermostats

• Smart batteries

• Industrial/Automotive

• Other Electronic Systems

General Description

The EMC1001 is a tiny SMBus temperature sensor
with ±1.5°C accuracy and two interrupts. Packaged in
a SOT23-6, the EMC1001 provides an accurate,
low-cost, low-current solution for critical temperature
monitoring in a PC or in embedded applications.

The EMC1001 generates two separate interrupts with
programmable thermal trip points. The THERM output
operates as a thermostat with programmable threshold
and hysteresis. The ALERT output can be configured
as a maskable SMBus alert with programmable win-
dow comparator limits, or as a second THERM output.
An efficient fan control system can be created since
this output may be used to control a fan.

A power-down mode extends battery life in portable
applications.

Each part number may be configured to respond to one
of four separate SMBus addresses.

Package Types

4

1

2

3

6 SMDATA

SMCLK

ADDR/THERM

GND

V

DD

5 ALERT/THERM2

EMC1001

6-Lead TSOT

±1.5°C SMBus Temperature Sensor in Miniature TSOT

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005411A-html.html
background image

EMC1001

DS2

0005411A-p

age 2

 20

15 M

ic

rochip 

T

e

c

hnology 

In

c

.

Simplified Block Diagram

EMC1001

Internal

Temp Diode

Switching

Current

SMCLK

Digital Mux

Limit

 Co

mp

arat

or

High Limit Registers

THERM Hysteresis Register

Low Limit Registers

THERM Limit Register

Address Pointer Register

Conversion Rate Register

Interrupt Masking

Status Register

Configuration Register

SMBus Interface

Temperature 

Register

ALERT

SMDATA

10-bit

delta-sigma 

ADC

THERM

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005411A-html.html
background image

 2015 Microchip Technology Inc.

DS20005411A-page 3

EMC1001

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings†

Supply Voltage VDD..............................................-0.3 to 5.0V 

Voltage on ALERT/THERM2, SMDATA and SMCLK pins ......

..............................................................................-0.3 to 5.5V

Voltage on any other pin .............................. -0.3 to V

DD

+0.3V

Lead Temperature Range .......................................................

.......................................... Refer to JEDEC Spec. J-STD-020

ESD Rating, All Pins (Human Body Model) ..................2000V

† Notice: Stresses above those listed under “Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational sections of this
specification is not intended. Exposure to maximum
rating conditions for extended periods may affect
device reliability.

ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise noted, V

DD

= 3.0V to 3.6V, T

A

= -25°C to +125°C, 

Typical values at T

A

= +27°C.

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

DC Power

Supply Voltage

V

DD

3.0

3.3

3.6

V

Average Operating Current

I

DD

36

mA

0.0625 conversion/s,
see 

Table 4-4

 

I

PD

4.8

10

µA

Standby mode

Temperature Measurement

Accuracy

±0.5

±1.5

°C

+40°C

 T

A

 85°C

±1

±3

°C

-25°C

 T

A

 125°C

Resolution

0.25

°C

Conversion Time

26

ms

Voltage Tolerance 

Voltage at pin 
(ADDR/THERM)

V

TOL

-0.3

3.6

V

Voltage at pin 
(ALERT/THERM2, 
SMDATA,SMCLK)

V

TOL

-0.3

5.5

V

Digital Outputs (ADDR/THERM, ALERT/THERM2)

Output Low Voltage

V

OL

0.4

V

I

OUT

= -4 mA

High Level 
Leakage Current

I

OH

0.1

1

mA

V

OUT

= V

DD

SMBus Interface (SMDATA,SMCLK)

Input High Level

V

IH

2.0

V

Input Low Level

V

IL

0.8

V

Input High/Low Current

I

IH

/I

IL

-1

1

mA

Hysteresis

500

mV

Input Capacitance

5

pF

Output Low Sink Current

6

mA

SMDATA = 0.6V

SMBus Timing

Clock Frequency

F

SMB

10

400

kHz

Spike Suppression

50

ns

Bus Free Time Start to Stop

T

BUF

1.3

µs

Hold Time Start

THD:STA

0.6

µs

Note 1:

300 ns rise time maximum is required for 400 kHz bus operation. For lower clock frequencies, the 
maximum rise time is (0.1/F

SMB

) + 50 ns.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005411A-html.html
background image

EMC1001

DS20005411A-page 4

 2015 Microchip Technology Inc.

Setup Time Start

TSU:STA

0.6

µs

Setup Time Stop

TSU:STO

0.6

µs

Data Hold Time

THD:DAT

0.3

µs

Data Setup Time

TSU:DAT

100

ns

Clock Low Period

T

LOW

1.3

µs

Clock High Period

T

HIGH

0.6

µs

Clock/Data Fall Time

T

F

20 + 0.1C

b

300

ns

Clock/Data Rise Time

T

R

20 + 0.1C

b

300

(

1

)

ns

Capacitive Load (each bus 
line)

Cb

0.6

400

pF

TABLE 1-1:

SMBUS ADDRESS CONFIGURATION INFORMATION

Part Number

ADDR/THERM Pull-up Resistor

SMBus Address

Package Description

EMC1001

7.5 k

 ±5%

(

Note 1

Note 2

)

100 1000b

6-Lead TSOT

12 k

 ±5% (

Note 2

)

100 1001b

6-Lead TSOT

20 k

 ±5% (

Note 2

)

011 1000b

6-Lead TSOT

33 k

 ±5% (

Note 2

)

011 1001b

6-Lead TSOT

EMC1001-1

7.5 k

 ±5% (

Note 1

Note 2

)

100 1010b

6-Lead TSOT

12 k

 ±5% (

Note 2

)

100 1011b

6-Lead TSOT

20 k

 ±5% (

Note 2

)

011 1010b

6-Lead TSOT

33 k

 ±5% (

Note 2

)

011 1011b

6-Lead TSOT

Note 1:

This value must be greater than 1 k

 5% and less than or equal to 7.5 k5%

2:

The pull-up resistor must be connected to V

DD

 (pin 1), and the total capacitance on this pin must be less 

than 100 pF.

ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Unless otherwise noted, V

DD

= 3.0V to 3.6V, T

A

= -25°C to +125°C, 

Typical values at T

A

= +27°C.

Parameter

Symbol

Min.

Typ.

Max.

Units

Conditions

Note 1:

300 ns rise time maximum is required for 400 kHz bus operation. For lower clock frequencies, the 
maximum rise time is (0.1/F

SMB

) + 50 ns.

TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise noted, V

DD

= 3.0V to 3.6V, T

A

= -25°C to +125°C, 

Typical values at T

A

= +27°C.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Temperature Ranges

Operating Ambient Temperature Range

T

A

-25

+125

°C

Storage Temperature Range

T

A

-55

+150

°C

Maximum Junction Temperature

T

J

-40

+150

°C

Package Thermal Resistances

Thermal Resistance, 6L-TSOT

JA

112

°C/W

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005411A-html.html
background image

 2015 Microchip Technology Inc.

DS20005411A-page 5

EMC1001

2.0

PIN DESCRIPTION

The descriptions of the pins are listed in 

Table 2-1

.

TABLE 2-1:

PIN FUNCTION TABLE

TSOT

Pin Number

Description

1

ADDR/THERM

Logic output pin that can be used to turn on/off a fan or throttle a CPU clock 
in the event of an overtemperature condition. This is an open-drain output. 
This pin is sampled following power-up and the value of the pull-up resistor 
determines the SMBus slave address (see 

Table 1-1

). Total capacitance on 

this pin must not exceed 100 pF, and the pull-up resistor must be connected 
to the same supply voltage as V

DD

.

2

GND

Ground pin

3

V

DD

Supply Voltage pin, 3.0V to 3.6V

4

SMCLK

SMBus Clock Input pin

5

ALERT/THERM2

Logic Output pin used as interrupt, SMBus alert or as a second THERM 
output. This is an open-drain output.

6

SMDATA

SMBus Data Input/Output pin, open-drain output

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005411A-html.html
background image

EMC1001

DS20005411A-page 6

 2015 Microchip Technology Inc.

3.0

SYSTEM MANAGEMENT BUS 
INTERFACE PROTOCOL

A host controller, such as an I/O controller,
communicates with the EMC1001 via the two-wire
serial interface named SMBus. The SMBus interface is
used to read and write registers in the EMC1001, which
is a slave-only device. A detailed timing diagram is
shown in 

Figure 3-1

.

FIGURE 3-1:

System Management Bus Timing Diagram.

The EMC1001 implements a subset of the SMBus
specification and supports Write Byte, Read Byte,
Send Byte, Receive Byte and Alert Response Address
protocols, as shown in the following sections.

All protocols in these sections use the convention in

Table 3-1

.

3.1

SMBus Write Byte

The Write Byte is used to write one byte of data to a
specific register as shown in 

Table 3-2

.

3.2

SMBus Read Byte

The Read Byte protocol is used to read one byte of data
from the registers as shown in 

Table 3-3

.

SMDATA

SMCLK

T

BUF

P

S

S - Start Condition

P - Stop Condition

P

S

T

HIGH

T

LOW

T

HD:STA

T

SU:STO

T

HD:STA

T

HD:DAT

T

SU:DAT

T

SU:STA

T

FALL

T

RISE

TABLE 3-1:

PROTOCOL FORMAT

Data Sent to Device

Data Sent to the Host

Data sent 

Data sent

TABLE 3-2:

WRITE BYTE PROTOCOL

START

Slave 

Address

WR

ACK

Command

ACK

Data

ACK

STOP

1

7

1

1

8

1

8

1

1

TABLE 3-3:

READ BYTE PROTOCOL

START

Slave 

Address

WR

ACK

Command

ACK

START

Slave 

Address

RD

ACK

Data

NACK

STOP

1

7

1

1

8

1

1

7

1

1

8

1

1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005411A-html.html
background image

 2015 Microchip Technology Inc.

DS20005411A-page 7

EMC1001

3.3

SMBus Send Byte

The Send Byte protocol is used to set the Internal
Address Register to the correct Address. The Send
Byte can be followed by the Receive Byte protocol
(

Section 3.4 “SMBus Receive Byte”

) in order to read

data from the register. The send byte protocol cannot
be used to write data; if data is to be written to a regis-
ter, then the Write Byte protocol must be used (see

Section 3.1 “SMBus Write Byte”

). The Send Byte

protocol is shown in 

Table 3-4

.

3.4

SMBus Receive Byte

The Receive Byte protocol is used to read data from a
register when the internal register address pointer is
known to be at the right location (e.g., set via Send
Byte). This is used for consecutive reads of the same
register as shown in 

Table 3-5

.

3.5

Alert Response Address

The ALERT/THERM2 output can be used as an
SMBALERT# as described in 

Section 4.3

“ALERT/THERM2 Output”

 The Alert Response

Address is polled by the Host whenever it detects an
SMBALERT#, i.e. when the ALERT/THERM2 pin is
asserted. The EMC1001 will acknowledge the Alert
Response Address and respond with its device
address as shown in 

Table 3-6

.

3.6

SMBus Addresses

The EMC1001 is available in two versions (EMC1001
and EMC1001-1), each of which has four 7-bit slave
addresses that are enabled based on the pull-up resis-
tor on the ADDR/THERM pin. The value of this pull-up
resistor determines the slave address per 

Table 1-1

.

Attempting to communicate with the EMC1001 SMBus
interface with an invalid slave address or invalid proto-
col results in no response from the device and does not
affect its register contents. 

The EMC1001 supports stretching of the SMCLK
signal by other devices on the SMBus but will not
perform this operation itself. The EMC1001 has an
SMBus timeout feature. Bit 7 of the SMBus Timeout
Enable register enables this function when set to 1 (the
default setting is 0). When this feature is enabled, the
SMBus will timeout after approximately 25 ms of
inactivity.

TABLE 3-4:

SEND BYTE PROTOCOL

START

Slave Address

WR

ACK

Register 
Address

ACK

STOP

1

7

1

1

8

1

1

TABLE 3-5:

RECEIVE BYTE PROTOCOL

START

Slave Address

RD

ACK

Register Data

NACK

STOP

1

7

1

1

8

1

1

TABLE 3-6:

MODIFIED SMBUS RECEIVE BYTE PROTOCOL RESPONSE TO ARA

START

Alert Response 

Address

RD

ACK

EMC1001 

Slave Address

NACK

STOP

1

7

1

1

8

1

1

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005411A-html.html
background image

EMC1001

DS20005411A-page 8

 2015 Microchip Technology Inc.

4.0

PRODUCT DESCRIPTION

The EMC1001 is an SMBus temperature sensor that
monitors a single temperature zone. Thermal manage-
ment is performed in cooperation with a host device.
The host reads the temperature data from the
EMC1001 and takes appropriate action such as con-
trolling fan speed or processor clock frequency. The
EMC1001 has programmable temperature-limit regis-
ters that define a safe operating window. After the host
has configured the temperature limits, the EMC1001
can operate as a free-running independent watchdog
to warn the host of temperature hot-spots, without
requiring the host to poll the device. The
ADDR/THERM output can be used to control a fan
without host intervention.

FIGURE 4-1:

Controlling a Fan without Host Intervention.

The EMC1001 has two basic modes of operation:

• Run Mode: In this mode, the EMC1001 

continuously converts temperature data and 
updates its registers. The rate of temperature 
conversion is configured as shown in 

Section 4.9 

“Conversion Rate Register”

• Standby Mode: In this mode, the EMC1001 is 

placed in Standby to conserve power, as 
described in 

Section 4.5 “Standby Mode”

ADDR/THERM

ALERT/THERM2

EMC1001

Host

Fan

Driver

SMDATA

Internal

Diode

SMCLK

SMBus 

Interface

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005411A-html.html
background image

 2015 Microchip Technology Inc.

DS20005411A-page 9

EMC1001

4.1

Temperature Monitors

Thermal diode temperature measurements are based
on the change in forward bias voltage (

V

BE

) of a diode

when operated at two different currents:

EQUATION 4-1:

The change in 

V

BE

 voltage is proportional to absolute

temperature T.

Figure 4-2

 shows a detailed block diagram of the

temperature measurement circuit. The EMC1001
incorporates switched capacitor technology that
integrates the temperature diode 

V

BE

 from different

bias currents. The negative terminal (DN) for the
temperature diode is internally biased with a forward
diode voltage referenced to ground.

The advantages of this architecture over Nyquist rate
direct-conversion ADC (FLASH) or successive approx-
imation register (SAR) converters are superb linearity
and inherent noise immunity. The linearity can be
directly attributed to the delta-sigma ADC single-bit
comparator, while the noise immunity is achieved by
the ~20 ms integration time which translates to 50 Hz
input noise bandwidth.

FIGURE 4-2:

Detailed Block Diagram.

4.2

Temperature Measurement 
Results and Data

The 10-bit temperature measurement results are
stored in temperature value registers. 

Table 4-1

 shows

the two’s complement temperature data format with an
LSB equivalent to 0.25°C.

V

B E

V

BE_HIGH

V

BE_LOW

kT

q

----------

I

HIGH

I

LOW

--------------

ln

=

=

Where:

k = Boltzmann’s Constant

T = Absolute Temperature in Kelvin

q = Electron Charge

 = Diode Ideality Factor

Delta V

BE

Sample

&

Hold

I

BIAS

I

LOW

I

HIGH

1-bit

Delta-Sigma

Modulator

Digital 

Averaging 

Filter

V

DD

Internal or 

Remote Diode

Bias

Diode

10-bit Output

TABLE 4-1:

TEMPERATURE DATA 
FORMAT

Temperature

Valid Range

-40°C to +125°C

Two’s Complement

-0.25°C

1111 1111 11

 

(

1

)

 0.0°C

0000 0000 00

Note 1:

Temperature measurement returns 
1100 0000 00

 for all temperatures 

-64.00°C.

2:

Temperature measurement returns 
0111 1111 11

 for all temperatures 

+127.75°C.

+0.25°C

0000 0000 01

+0.50°C

0000 0000 10

+0.75°C

0000 0000 11

+1°C

0000 0001 00

...

...

+125°C

0111 1101 00

 

(

2

)

TABLE 4-1:

TEMPERATURE DATA 
FORMAT (CONTINUED)

Temperature

Valid Range

-40°C to +125°C

Two’s Complement

Note 1:

Temperature measurement returns 
1100 0000 00

 for all temperatures 

-64.00°C.

2:

Temperature measurement returns 
0111 1111 11

 for all temperatures 

+127.75°C.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005411A-html.html
background image

EMC1001

DS20005411A-page 10

 2015 Microchip Technology Inc.

The eight most significant bits are stored in the
Temperature Value High Byte register and the two least
significant bits stored in the Temperature Value Low
Byte register as outlined in 

Table 4-2

. The six LSB

positions of the Temperature Value Low Byte register
always read zero. In 

Table 4-2

, the upper case “B”

shows the bit position of a 16-bit word created by
concatenating the High Byte and Low Byte, and the
lower case “b” shows the bit position in the 10-bit value.

4.3

ALERT/THERM2 Output

The ALERT/THERM2 output asserts if an out-of-limit
measurement is detected (T

A

 

 low limit or T

A

 > high

limit). The ALERT/THERM2 pin is an open-drain output
and requires a pull-up resistor to V

DD

. The

ALERT/THERM2 pin can be used as an SMBALERT#,
or may be configured as a second THERM output. 

As described in the SMBus specification, an SMBus
slave may inform the SMBus master that it wants to talk
by asserting the SMBALERT# signal. One or more
ALERT outputs can be hardwired together as a
wired-OR bus to a common input. 

The ALERT/THERM2 pin resets when the EMC1001
responds to an alert response address
(ARA = 0001 100) sent by the host, and if the out-of-
limit condition no longer exists, but it does not reset if
the error condition remains. The ALERT/THERM2 pin
can be masked so that it will not assert in the event of
an out-of-limit temperature measurement, except when
it is configured as a second THERM pin.

FIGURE 4-3:

ALERT Response to Temperature Limits Exceeded.

The ALERT/THERM2 pin can be configured as a sec-
ond THERM pin that asserts when the temperature
measurement exceeds the Temperature High Limit
value. The output will not de-assert until the tempera-
ture drops below the Temperature High Limit, minus the
THERM Hysteresis value.

TABLE 4-2:

BIT POSITION OF TWO BYTE VALUES

High Byte

Low Byte

B15

B14

B13

B12

B11

B10

B9

B8

B7

B6

B5

B4

B3

B2

B1

B0

b9

b8

b7

b6

b5

b4

b3

b2

b1

b0

0

0

0

0

0

0

Temp

Time

Temperature High Limit

Temperature Low Limit

ALERT/THERM2

Logic High

Logic
Level

SMBus ARA

Maker
Microchip Technology Inc.
Datasheet PDF Download