ATmega325P/3250P Summary Datasheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8023S-html.html
background image

Features

High Performance, Low Power AVR

® 

8-Bit Microcontroller

Advanced RISC Architecture

– 130 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 20 MIPS Throughput at 20 MHz
– On-Chip 2-cycle Multiplier

High Endurance Non-volatile Memory segments

– 32K Bytes of In-System Self-programmable Flash program memory
– 1K Bytes EEPROM
– 2K Bytes Internal SRAM
– Write/Erase cyles: 10,000 Flash/100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C

(1)

– Optional Boot Code Section with Independent Lock Bits

In-System Programming by On-chip Boot Program
True Read-While-Write Operation

– Programming Lock for Software Security

JTAG (IEEE std. 1149.1 compliant) Interface

– Boundary-scan Capabilities According to the JTAG Standard
– Extensive On-chip Debug Support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface

Peripheral Features

– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture 

Mode

– Real Time Counter with Separate Oscillator
– Four  PWM  Channels
– 8-channel, 10-bit ADC
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Universal Serial Interface with Start Condition Detector
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change

Special Microcontroller Features

– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and 

Standby

I/O and Packages

– 54/69 Programmable I/O Lines
– 64-lead TQFP, 64-pad QFN/MLF, and 100-lead TQFP

Speed Grade:

– ATmega325PV/ATmega3250PV:

0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V

– ATmega325P/3250P: 

0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V

Temperature range:

– -40°C to 85°C Industrial

Ultra-Low Power Consumption

– Active Mode: 

420 µA at 1 MHz, 1.8V

– Power-down Mode: 

40 nA at 1.8V

– Power-save Mode: 

750 nA at 1.8V

8-bit  
Microcontroller 
with 32K Bytes 
In-System
Programmable 
Flash

ATmega325P/V
ATmega3250P/V

Preliminary

 8023FS–AVR–07/09

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8023S-html.html
background image

2

8023FS–AVR–07/09

ATmega325P/3250P

1.

Pin Configurations

Figure 1-1.

Pinout ATmega3250P

(OC2A/PCINT15) PB7

DNC

(T1) PG3

(T0) PG4

RESET/PG5

VCC

GND

(T

OSC2) XT

AL2

(T

OSC1) XT

AL1

DNC

DNC

(PCINT26) PJ2

(PCINT27) PJ3

(PCINT28) PJ4

(PCINT29) PJ5

(PCINT30) PJ6

DNC

(ICP1) PD0

(INT0) PD1

 PD2

 PD3

PD4

 PD5

 PD6

 PD7

AV

C

C

AG

N

D

AREF

PF0 (ADC0)

PF1 (ADC1)

PF2 (ADC2)

PF3 (ADC3)

PF4 (ADC4/TCK)

PF5 (ADC5/TMS)

PF6 (ADC6/TDO)

PF7 (ADC7/TDI)

DNC

DNC

PH7 (PCINT23)

PH6 (PCINT22)

PH5 (PCINT21)

PH4 (PCINT20)

DNC

DNC

GND

VCC

DNC

PA

0

 

PA

1

 

PA

2

 

PA3 

PA4 

PA5

PA6 

PA7 

PG2 

PC7 

PC6 

DNC

PH3 (PCINT19)

PH2 (PCINT18)

PH1 (PCINT17)

PH0 (PCINT16)

DNC

DNC

DNC

DNC

PC5

PC4

PC3

PC2

PC1

PC0

PG1

PG0 

INDEX CORNER

ATmega3250

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

75

74

73

72

71

70

69

68

67

66

65

64

63

62

61

60

59

58

57

56

55

54

53

52

51

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

DNC

(RXD/PCINT0) PE0

(TXD/PCINT1) PE1

(XCK/AIN0/PCINT2) PE2

(AIN1/PCINT3) PE3

(USCK/SCL/PCINT4) PE4

(DI/SDA/PCINT5) PE5

(DO/PCINT6) PE6

(CLKO/PCINT7) PE7

VCC

GND

DNC

(PCINT24) PJ0

(PCINT25) PJ1

DNC

DNC

DNC

DNC

(SS/PCINT8) PB0

(SCK/PCINT9) PB1

(MOSI/PCINT10) PB2

(MISO/PCINT11) PB3

(OC0A/PCINT12) PB4

(OC1A/PCINT13) PB5

(OC1B/PCINT14) PB6

TQFP

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8023S-html.html
background image

3

8023FS–AVR–07/09

ATmega325P/3250P

Figure 1-2.

Pinout ATmega325P

Note:

The large center pad underneath the QFN/MLF packages is made of metal and internally con-
nected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If 
the center pad is left unconnected, the package might loosen from the board.

1.1

Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.

2.

Overview

The ATmega325P/3250P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By
executing powerful instructions in a single clock cycle, the ATmega325P/3250P achieves throughputs approaching 1 MIPS
per MHz allowing the system designer to optimize power consumption versus processing speed.

PC0   

VCC

GND

PF0 (ADC0)

PF7 (ADC7/TDI) 

PF1 (ADC1)

PF2 (ADC2)

PF3 (ADC3)

PF4 (ADC4/TCK)

PF5 (ADC5/TMS) 

PF6 (ADC6/TDO)

AREF

GND

A

VCC

17

61

60

18

59

20

58

19

21

57

22

56

23

55

24

54

25

53

26

52

27

51

29

28

50

49

32

31

30

(RXD/PCINT0) PE0

(TXD/PCINT1) PE1

DNC

(XCK/AIN0/PCINT2) PE2

(AIN1/PCINT3) PE3

(USCK/SCL/PCINT4) PE4

 (DI/SDA/PCINT5) PE5

(DO/PCINT6) PE6

(CLKO/PCINT7)  PE7

(SCK/PCINT9) PB1

 (MOSI/PCINT10) PB2

 (MISO/PCINT11) PB3

(OC0A/PCINT12) PB4

(OC2A/PCINT15) PB7

 (T1) PG3

(OC1B/PCINT14) PB6

 (T0) PG4

(OC1A/PCINT13) PB5

PC1

PG0 

 PD7

PC2

PC3

PC4

PC5

PC6 

PC7

PA7 

PG2 

PA6 

PA5 

PA4 

PA3 

PA

0

 

PA

1

 

PA

2

 

PG1 

 PD6

 PD5

 PD4

 PD3

 PD2 

(INT0) PD1

(ICP1) PD0

(T

OSC1) XT

AL1

(T

OSC2) XT

AL2

RESET/PG5

GND

VCC

INDEX CORNER

(SS/PCINT8) PB0

2

1

4

5

6

7

8

9

10

11

12

13

14

16

15

64

63

62

47

46 

48

45

44

43

42

41

40

39

38

37

36

35

33

34

ATmega325

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8023S-html.html
background image

4

8023FS–AVR–07/09

ATmega325P/3250P

2.1

Block Diagram

Figure 2-1.

Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

PROGRAM

COUNTER

INTERNAL

OSCILLATOR

WATCHDOG

TIMER

STACK

POINTER

PROGRAM

FLASH

MCU CONTROL

REGISTER

SRAM

GENERAL

PURPOSE

REGISTERS

INSTRUCTION

REGISTER

TIMER/

COUNTERS

INSTRUCTION

DECODER

DATA DIR.

REG. PORTB

DATA DIR.

REG. PORTE

DATA DIR.

REG. PORTA

DATA DIR.

REG. PORTD

DATA REGISTER

PORTB

DATA REGISTER

PORTE

DATA REGISTER

PORTA

DATA REGISTER

PORTD

TIMING AND

CONTROL

OSCILLATOR

INTERRUPT

UNIT

EEPROM

SPI

USART

STATUS

REGISTER

Z

Y

X

ALU

PORTB DRIVERS

PORTE DRIVERS

PORTA DRIVERS

PORTF DRIVERS

PORTD DRIVERS

PORTC DRIVERS

PB0 - PB7

PE0 - PE7

PA0 - PA7

PF0 - PF7

VCC

GND

XT

AL1

XT

AL2

CONTROL

LINES

+

-

A

N

ALOG

COMP

ARA

T

O

R

PC0 - PC7

8-BIT DATA BUS

RESET

CALIB. OSC

DATA DIR.

REG. PORTC

DATA REGISTER

PORTC

ON-CHIP DEBUG

JTAG TAP

PROGRAMMING

LOGIC

BOUNDARY- 

SCAN

DATA DIR.

REG. PORTF

DATA REGISTER

PORTF

ADC

PD0 - PD7

DATA DIR.

REG. PORTG

DATA REG.

PORTG

PORTG DRIVERS

PG0 - PG4

AGND

AREF

AVCC

UNIVERSAL

SERIAL INTERFACE

AVR CPU

POR

TH DRI

V

ERS

PH0 - PH7

D

A

T

A

DIR.

REG.

POR

T

H

D

A

T

A

REGISTER

POR

T

H

POR

TJ DRI

V

ERS

PJ0 - PJ6

D

A

T

A

DIR.

REG.

POR

T

J

D

A

T

A

REGISTER

POR

T

J

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8023S-html.html
background image

5

8023FS–AVR–07/09

ATmega325P/3250P

The ATmega325P/3250P provides the following features: 32K bytes of In-System Programma-
ble Flash with Read-While-Write capabilities, 1K bytes EEPROM, 2K byte SRAM, 54/69 general
purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan,
On-chip Debugging support and programming, three flexible Timer/Counters with compare
modes, internal and external interrupts, a serial programmable USART, Universal Serial Inter-
face with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer
with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The
Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt sys-
tem to continue functioning. The Power-down mode saves the register contents but freezes the
Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-
save mode, the asynchronous timer, allowing the user to maintain a timer base while the rest of
the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules
except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In
Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping.
This allows very fast start-up combined with low-power consumption. 

The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip In-System re-Programmable (ISP) Flash allows the program memory to be repro-
grammed In-System through an SPI serial interface, by a conventional non-volatile memory
programmer, or by an On-chip Boot program running on the AVR core. The Boot program can
use any interface to download the application program in the Application Flash memory. Soft-
ware in the Boot Flash section will continue to run while the Application Flash section is updated,
providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System
Self-Programmable Flash on a monolithic chip, the Atmel ATmega325P/3250P is a powerful
microcontroller that provides a highly flexible and cost effective solution to many embedded con-
trol applications.

The ATmega325P/3250P AVR is supported with a full suite of program and system develop-
ment tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit
Emulators, and Evaluation kits.

2.2

Comparison between ATmega325P and ATmega3250P

The ATmega325P and ATmega3250P differs only in memory sizes, pin count and pinout. 

Table

2-1 on page 5

 summarizes the different configurations for the four devices.

Table 2-1.

Configuration Summary

Device

Flash

EEPROM

RAM

General Purpose
I/O Pins

ATmega325P

32K bytes

1K bytes

2K bytes

54

ATmega3250P

32K bytes

1K bytes

2K bytes

69

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8023S-html.html
background image

6

8023FS–AVR–07/09

ATmega325P/3250P

2.3

Pin Descriptions

The following section describes the I/O-pin special functions.

2.3.1

V

CC

Digital supply voltage.

2.3.2

GND

Ground.

2.3.3

Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

2.3.4

Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega325P/3250P as listed
on 

page 71

.

2.3.5

Port C (PC7..PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

2.3.6

Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the ATmega325P/3250P as listed
on 

page 74

2.3.7

Port E (PE7..PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8023S-html.html
background image

7

8023FS–AVR–07/09

ATmega325P/3250P

resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port E also serves the functions of various special features of the ATmega325P/3250P as listed
on 

page 75

.

2.3.8

Port F (PF7..PF0)

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will
be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface.

2.3.9

Port G (PG5..PG0)

Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port G output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port G also serves the functions of various special features of the ATmega325P/3250P as listed
on 

page 75

.

2.3.10

Port H (PH7..PH0)

Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port H output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port H pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port H pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port H also serves the functions of various special features of the ATmega3250P as listed on

page 75

.

2.3.11

Port J (PJ6..PJ0)

Port J is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port J output buffers have symmetrical drive characteristics with both high sink and source capa-
bility. As inputs, Port J pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port J pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port J also serves the functions of various special features of the ATmega3250P as listed on

page 75

.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8023S-html.html
background image

8

8023FS–AVR–07/09

ATmega325P/3250P

2.3.12

RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in 

”System and Reset

Characterizations” on page 308

. Shorter pulses are not guaranteed to generate a reset.

2.3.13

XTAL1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

2.3.14

XTAL2

Output from the inverting Oscillator amplifier.

2.3.15

AVCC

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally con-
nected to V

CC

, even if the ADC is not used. If the ADC is used, it should be connected to V

CC

through a low-pass filter. 

2.3.16

AREF

This is the analog reference pin for the A/D Converter.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8023S-html.html
background image

9

8023FS–AVR–07/09

ATmega325P/3250P

3.

Resources 

A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/8023S-html.html
background image

10

8023FS–AVR–07/09

ATmega325P/3250P

Note:

1.

4.

Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

5.

About Code Examples 

This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

Maker
Microchip Technology Inc.
Datasheet PDF Download