ATA6566 High-Speed CAN Transceiver with Standby Mode for the Japanese Market - CAN FD Ready

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005783C-html.html
background image

 2017 Microchip Technology Inc.

DS20005783C-page 1

ATA6566

Features

• Compliant with Japanese OEM Requirements
• Certified According to Latest VeLIO (Vehicle 

LAN Interoperability and Optimization) Test 
Specification

• Fully ISO 11898-2, ISO 11898-5, 

ISO 11898-2: 2016 and SAE J2962-2 Compliant

• Communication Speed up to 2 Mbit/s
• Low Electromagnetic Emission (EME) and High 

Electromagnetic Immunity (EMI)

• Differential Receiver with Wide Common-Mode 

Range

• Remote Wake-up Capability via CAN Bus – 

Wake-up on Pattern (WUP) as Specified in 
ISO 11898-2: 2016, 3.8 µs Activity Filter Time

• Functional Behavior Predictable under All Supply 

Conditions

• Transceiver Disengages from the Bus when 

Not Powered Up

• RXD Recessive Clamping Detection
• High Electrostatic Discharge (ESD) Handling 

Capability on the Bus Pins

• Bus Pins Protected Against Transients in 

Automotive Environments

• Transmit Data (TXD) Dominant Time-out Function
• Undervoltage Detection on VCC and VIO Pins
• CANH/CANL Short-Circuit and Overtemperature 

Protected

• Fulfills the OEM “Hardware Requirements for LIN, 

CAN and FlexRay™ Interfaces in Automotive 
Applications”, 

Rev. 1.3

• Qualified According to AEC-Q100
• Two Ambient Temperature Grades:

- ATA6566-GAQW1 and ATA6566-GBQW1 up 

to T

amb

= +125°C

- ATA6566-GAQW0 and ATA6566-GBQW0 up 

to T

amb

= +150°C 

• Packages: 8-Pin SOIC, 8-Pin VDFN with Wettable 

Flanks (Moisture Sensitivity Level 1)

Applications

Classical CAN and CAN FD networks in Automotive,
Industrial, Aerospace, Medical and Consumer
applications.

General Description

The ATA6566 is a high-speed CAN transceiver that
provides an interface between a Controller Area Net-
work (CAN) protocol controller and the physical
two-wire CAN bus. The transceiver is designed for
high-speed (up to 2 Mbit/s) CAN applications in the
automotive industry, providing differential transmit and
receive capability to (a microcontroller with) a CAN
protocol controller.
It offers improved Electromagnetic Compatibility (EMC)
and Electrostatic Discharge (ESD) performance, as
well as features such as:
• Ideal passive behavior to the CAN bus when the 

supply voltage is off

• Direct interfacing to microcontrollers with supply 

voltages from 3V to 5V

Two operating modes, together with the dedicated
fail-safe features, make the ATA6566 an excellent
choice for all types of high-speed CAN networks,
especially in nodes requiring Low-Power mode with
wake-up capability via the CAN bus.

Package Types

ATA6566

8-Pin SOIC

ATA6566

8-Pin VDFN

STBY

CANL

CANH

VIO

TXD

VCC

GND

RXD

ATA6566

1

2

3

4

8

7

6

5

ATA6566

TXD

GND

VCC

RXD

STBY

CANH

CANL

VIO

TXD

GND

VCC
RXD

STBY
CANH
CANL
VIO

High-Speed CAN Transceiver with Standby Mode

for the Japanese Market – CAN FD Ready

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005783C-html.html
background image

ATA6566

DS20005783C-page 2

 2017 Microchip Technology Inc.

ATA6566 Family Members

Functional Block Diagram

Device

Grade 0

Grade 1

VDFN8

SOIC8

Description

ATA6566-GAQW0

X

X

Standby mode, VIO – pin for compatibility 
with 3.3V and 5V microcontroller

ATA6566-GBQW0

X

X

Standby mode, VIO – pin for compatibility 
with 3.3V and 5V microcontroller

ATA6566-GAQW1

X

X

Standby mode, VIO – pin for compatibility 
with 3.3V and 5V microcontroller

ATA6566-GBQW1

X

X

Standby mode, VIO – pin for compatibility 
with 3.3V and 5V microcontroller

Note 1: HSC: High-Speed Comparator.

2: WUC: Wake-up Comparator.

Temperature

Protection

Control

Unit

Wake-up

Filter

Slope

Control

and

Driver

TXD

Time-out

Timer 

9,2

9,2

9,2

9&&

9&&

MUX

TXD

STBY

CANH

ATA6566

RXD

7

5

3

4

CANL

GND

6

9,2

WUC

(2)

HSC

(1)

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005783C-html.html
background image

 2017 Microchip Technology Inc.

DS20005783C-page 3

ATA6566

1.0

FUNCTIONAL DESCRIPTION

The ATA6566 is a stand-alone, high-speed CAN
transceiver, compliant with the ISO 11898-2,
ISO 11898-2: 2016, ISO 11898-5 and SAE J2962-2
CAN standards. It provides a very low current consump-
tion in Standby mode and wake-up capability via the
CAN bus. Pin 5 is the VIO pin and should be connected
to the microcontroller supply voltage. This allows direct
interfacing to microcontrollers with supply voltages down

to 3V, and adjusts the signal levels of the TXD, RXD and
STBY pins to the I/O levels of the microcontroller. The
I/O ports are supplied by the VIO pin.

1.1

Operating Modes

The ATA6566 supports two operating modes: Silent
and Normal. These modes can be selected via the
STBY pin. See 

Figure 1-1

 and 

Table 1-1

 for a

description of the operating modes.

FIGURE 1-1:

OPERATING MODES

TABLE 1-1:

OPERATING MODES

* Silent mode is externally not accessible.

STBY = 0 and
TXD = 0         

VCC < V

uvd(VCC) 

or

STBY = 1

STBY = 0 and
TXD = 1 and

Error = 0 and
TXD = 1

*

Error = 1

Error = 0

VCC < V

uvd(VCC) 

or

VIO < V

uvd(VIO)

VIO < V

uvd(VIO)

VCC < V

uvd(VCC) 

or

VCC > V

uvd(VCC) 

and

VIO < V

uvd(VIO)

VIO > V

uvd(VIO)

Unpowered

Mode

Standby

Mode

Silent Mode

(Receive only)

Normal

Mode

STBY = 1

Mode

Inputs

Outputs

STBY

Pin TXD

CAN Driver

Pin RXD

Unpowered

X

(

1

)

X

(

1

)

Recessive

Recessive

Standby

High

X

(

1

)

Recessive

Active

(

2

)

Normal

Low

Low

Dominant

Low

Low

High

Recessive

High

Note 1: Irrelevant.

2: Reflects the bus only for wake-up.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005783C-html.html
background image

ATA6566

DS20005783C-page 4

 2017 Microchip Technology Inc.

1.1.1

NORMAL MODE

A low level on the STBY pin, together with a high level on
the TXD pin, selects the Normal mode. In this mode, the
transceiver is able to transmit and receive data via the
CANH and CANL bus lines (see the 

“Functional Block

Diagram”

). The output driver stage is active and drives

data from the TXD input to the CAN bus. The High-Speed
Comparator (HSC) converts the analog data on the bus
lines into digital data, which is output to pin RXD. The bus
biasing is set to V

VCC

/2 and the undervoltage monitoring

of VCC is active. 

The slope of the output signals on the bus lines is
controlled and optimized to ensure the lowest possible
Electromagnetic Emission (EME).
To switch the device to Normal Operating mode, set the
STBY pin to low and the TXD pin to high (see 

Table 1-1

and 

Figure 1-2

). The STBY and TXD pins each provide

a pull-up resistor to VIO, ensuring defined levels if the
pins are open.
Please note that the device cannot enter Normal mode
as long as TXD is at ground level.

FIGURE 1-2:

SWITCHING FROM STANDBY MODE TO NORMAL MODE

STBY

TXD

Standby Mode

t

del(stby-norm)

 =

47 μs max

Normal Mode

t

t

t

Operation

Mode

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005783C-html.html
background image

 2017 Microchip Technology Inc.

DS20005783C-page 5

ATA6566

1.1.2

STANDBY MODE

A high level on the STBY pin selects Standby mode. In
this mode, the transceiver is not able to transmit or
correctly receive data via the bus lines. The transmitter
and the High-Speed Comparator (HSC) are switched
off to reduce current consumption.

1.1.3

REMOTE WAKE-UP VIA THE CAN 
BUS

In Standby mode, the bus lines are biased to ground to
reduce current consumption to a minimum. The
ATA6566 monitors the bus lines for a valid wake-up
pattern, as specified in the ISO 11898-2: 2016. This fil-
tering helps to avoid spurious wake-up events that
would be triggered by scenarios, such as a dominant
clamped bus or by a dominant phase due to noise,
spikes on the bus, automotive transients or EMI. The
wake-up pattern consists of at least two consecutive
dominant bus levels for a duration of at least t

Filter

, each

separated by a recessive bus level with a duration of at

least t

Filter

. Dominant or recessive bus levels shorter

than t

Filter

 are always ignored. The complete domi-

nant-recessive-dominant  pattern, as shown in

Figure 1-3

, must be received within the bus wake-up

time-out time, t

Wake

, to be recognized as a valid

wake-up pattern. Otherwise, the internal wake-up logic
is reset and then the complete wake-up pattern must
be retransmitted to trigger a wake-up event. The RXD
pin remains at a high level until a valid wake-up event
has been detected.
During normal mode, at a VCC or VIO undervoltage
condition or when the complete wake-up pattern is not
received within t

Wake

, no wake-up is signaled at the

RXD pin.
When a valid CAN wake-up pattern is detected on the
bus, the RXD pin switches to low to signal a wake-up
request. A transition to Normal mode is not triggered
until the STBY pin is forced back to low by the
microcontroller.

FIGURE 1-3:

TIMING OF THE BUS WAKE-UP PATTERN (WUP) IN STANDBY MODE

t

dom

 = t

Filter

V

Diff

t

dom

 = t

Filter

t

rec

 = t

Filter

W”t

Wake

dominant

recessive

Bus Wake-up

is Signaled

CANH

CANL

RXD

dominant

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005783C-html.html
background image

ATA6566

DS20005783C-page 6

 2017 Microchip Technology Inc.

1.2

Fail-Safe Features

1.2.1

TXD DOMINANT TIME-OUT 
FUNCTION

A TXD dominant time-out timer is started when the
TXD pin is set to low. If the low state on the TXD pin
persists for longer than t

to(dom)TXD

, the transmitter is

disabled, releasing the bus lines to a recessive state.
This function prevents a hardware and/or software
application failure from driving the bus lines to a
permanent dominant state (blocking all network
communications). The TXD dominant time-out timer is
reset when the TXD pin is set to high. If the low state
on the TXD pin is longer than t

to(dom)TXD

, then the TXD

pin has to be set to high ≥ 4 µs in order to reset the TXD
dominant time-out timer.

1.2.2

INTERNAL PULL-UP STRUCTURE 
AT THE TXD AND STBY INPUT PINS

The TXD and STBY pins have an internal pull-up to
VIO. This ensures a safe, defined state in case one or
all of these pins are left floating. Pull-up currents flow in
these pins in all states, meaning all pins should be in a
high state during Standby mode to minimize the current
consumption.

1.2.3

UNDERVOLTAGE DETECTION ON 
PINS VCC AND VIO

If V

VCC

 or V

VIO

 drops below its respective undervoltage

detection levels (V

uvd(VCC)

 and V

uvd(VIO)

, see 

Section 2.0

“Electrical Characteristics”

), the transceiver switches

off and disengages from the bus until V

VCC

 and V

VIO

 have

recovered. The low-power Wake-up Comparator is only

switched off during a VCC or VIO undervoltage. The logic
state of the STBY pin is ignored until the VCC voltage or
the VIO voltage has recovered.

1.2.4

BUS WAKE-UP ONLY AT 
DEDICATED WAKE-UP PATTERN

Due to the implementation of the wake-up filtering, the
ATA6566 does not wake-up when the bus is in a long
dominant phase; it only wakes up at a dedicated wake-up
pattern as specified in the ISO 11898-2: 2016. This
means for a valid wake-up, at least two consecutive
dominant bus levels for a duration of at least t

Filter

, each

separated by a recessive bus level with a duration of at
least t

Filter

, must be received via the bus. Dominant or

recessive bus levels shorter than t

Filter

 are always

ignored. The complete dominant-recessive-dominant
pattern, as shown in 

Figure 1-3

, must be received within

the bus wake-up time-out time, t

Wake

, to be recognized as

a valid wake-up pattern. This filtering leads to a higher
robustness against EMI and transients, and therefore,
significantly reduces the risk of an unwanted bus
wake-up.

1.2.5

OVERTEMPERATURE PROTECTION

The output drivers are protected against overtemperature
conditions. If the junction temperature exceeds the shut-
down junction temperature, T

Jsd

, the output drivers are

disabled until the junction temperature drops below T

Jsd

and pin TXD is at a high level again. The TXD condition
ensures that output driver oscillations due to temperature
drift are avoided.

FIGURE 1-4:

RELEASE OF TRANSMISSION AFTER OVERTEMPERATURE CONDITION

Failure

Overtemp

GND

TXD

Overtemperature

R

D

R

t

t

t

OT

BUS V

DIFF

(CANH-CANL)

9,2

R

D

D

t

t

RXD

9,2

GND

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005783C-html.html
background image

 2017 Microchip Technology Inc.

DS20005783C-page 7

ATA6566

1.2.6

SHORT-CIRCUIT PROTECTION OF 
THE BUS PINS

The CANH and CANL bus outputs are short-circuit
protected, either against GND or a positive supply
voltage. A current-limiting circuit protects the trans-
ceiver against damage. If the device is heating up
due to a continuous short on CANH or CANL, the
internal overtemperature protection switches the bus
transmitter off.

1.2.7

RXD RECESSIVE CLAMPING

This fail-safe feature prevents the controller from
sending data on the bus if its RXD line is clamped to
high (e.g., recessive). That is, if the RXD pin cannot

signalize a dominant bus condition (e.g., because it is
shorted to VCC), the transmitter within ATA6566 is
disabled to avoid possible data collisions on the bus. In
Normal mode, the device permanently compares the
state of the High-Speed Comparator (HSC) with the
state of the RXD pin. If the HSC indicates a dominant
bus state for more than t

RC_det

, without the RXD pin

doing the same, a recessive clamping situation is
detected and the device is forced into Silent mode
(receive only). This Fail-Safe mode is released by
either entering Standby or Unpowered mode, or if the
RXD pin is showing a dominant (e.g., low) level again.

FIGURE 1-5:

RXD RECESSIVE CLAMPING DETECTION

CAN

TXD

RXD

Operation

Mode

Normal

Normal

Silent

If the clamping condition is removed and a
dominant bus is detected, the transceiver
goes back to normal mode.

If the clamping condition is removed and a
dominant bus is detected, the transceiver
goes back to Normal mode.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005783C-html.html
background image

ATA6566

DS20005783C-page 8

 2017 Microchip Technology Inc.

1.3

Pin Descriptions

The descriptions of the pins are listed in 

Table 1-2

.

TABLE 1-2:

PIN FUNCTION TABLE

Typical Application

Pin Number

Pin Name

Description

1

TXD

Transmit Data Input

2

GND

Ground Supply

3

VCC

Supply Voltage

4

RXD

Receive Data Output; Reads Out Data from the Bus Lines

5

VIO

Supply Voltage for I/O Level Adapter

6

CANL

Low-Level CAN Bus Line

7

CANH

High-Level CAN Bus Line

8

STBY

Standby Mode Control Input

9

EP

(

1

)

Exposed Thermal Pad: Heat Slug, Internally Connected to the GND Pin

Note 1: Only for the VDFN package.

Note 1:The size of this capacitor depends on the used external voltage regulator.

2: For VDFN package: Heat slug must always be connected to GND.

7

8

1

4

5

2

3

CANH

100nF

22μF

(1)

VIO

VCC

+

VDD

Microcontroller

GND

ATA6566

CANH

STBY

TXD

RXD

CANL

BAT

5V

12V

6

CANL

GND

GND

3.3V

12V

100nF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005783C-html.html
background image

 2017 Microchip Technology Inc.

DS20005783C-page 9

ATA6566

2.0

ELECTRICAL CHARACTERISTICS

2.1

Absolute Maximum Ratings

(†)

DC Voltage at CANH and CANL ................................................................................................................  –27V to +42V
Transient Voltage on CANH and CANL (ISO 7637, Part 2) ...................................................................  –150V to +100V
Maximum Differential Bus Voltage ...............................................................................................................  –5V to +18V
DC Voltage on All Other Pins ...................................................................................................................  –0.3V to +5.5V
ESD Protection on CANH and CANL Pins (IEC 61000-4-2) .................................................................................... ±8 kV 
ESD (HBM following STM 5.1 with 1.5 k

/100 pF) – Pins CANH, CANL to GND..................................................  ±6 kV

Component Level ESD (HBM according to ANSI/ESD STM 5.1), JESD22-A114, AEC-Q 100 (002).....................  ±4 kV
CDM ESD STM 5.3.1............................................................................................................................................. ±750V
ESD Machine Model AEC-Q100-RevF(003).......................................................................................................... ±200V
Virtual Junction Temperature (T

vJ

) ........................................................................................................  –40°C to +175°C

Storage Temperature (T

stg

) .................................................................................................................... –55°C to +150°C

† Notice: Stresses beyond those listed below may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions beyond those indicated in the operational sections
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/20005783C-html.html
background image

ATA6566

DS20005783C-page 10

 2017 Microchip Technology Inc.

ELECTRICAL CHARACTERISTICS

Electrical Specifications: Grade 1: T

amb

=  –40°C to +125°C; Grade 0: T

amb

= –40°C to +150°C; 

V

VCC

= 4.75V to 5.25V; V

VIO

= 2.8V to 5.5V; R

L

= 60

, C

L

= 100 pF unless otherwise specified. All voltages are 

defined in relation to ground; positive currents flow into the IC.

Parameters

Sym.

Min.

Typ.

Max.

Units

Conditions

Supply, Pin VCC
Supply Voltage

V

VCC

4.75

5.25

V

Supply Current in Normal
Mode

I

VCC_rec

2

5

mA

Recessive, V

TXD

= V

VIO

I

VCC_dom

30

50

70

mA

Dominant, V

TXD

= 0V

I

VCC_short

85

mA

Short between CANH and 
CANL (

Note 1

)

Supply Current in Standby 
Mode

I

VCC_STBY

12

µA

V

VCC

= V

VIO

, V

TXD

= V

VIO

I

VCC_STBY

7

µA

T

amb

= +25°C (

Note 3

)

Undervoltage Detection
Threshold on Pin VCC

V

uvd(VCC)

2.75

4.5

V

I/O Level Adapter Supply, Pin VIO
Supply Voltage on Pin VIO

V

VIO

2.8

5.5

V

Supply Current on Pin VIO

I

VIO_rec

10

80

250

µA

Normal mode
recessive, V

TXD

= V

VIO

I

VIO_dom

50

350

500

µA

Normal mode
dominant, V

TXD

= 0V

I

VIO_STBY

1

µA

Standby mode

Undervoltage Detection
Threshold on Pin VIO

V

uvd(VIO)

1.3

2.7

V

Mode Control Input, Pin STBY
High-Level Input Voltage

V

IH

0.7 

V

VIO

V

VIO

 + 0.3

V

Low-Level Input Voltage

V

IL

–0.3

0.3 

V

VIO

V

Pull-up Resistor to VIO

R

pu

75

125

175

kΩ

V

STBY

= 0V

Low-Level Leakage Current

I

L

–2

+2

µA

V

STBY

= V

VIO

CAN Transmit Data Input, Pin TXD
High-Level Input Voltage

V

IH

0.7 

 V

VIO

V

VIO

 + 0.3

V

Low-Level Input Voltage

V

IL

–0.3

0.3 

V

VIO

V

Pull-up Resistor to VIO

R

TXD

20

35

50

kΩ

V

TXD

= 0V

High-Level Leakage Current

I

TDX

–2

+2

µA

Normal mode, V

TXD

= V

VIO

Input Capacitance

C

TXD

5

10

pF

(

Note 3

)

CAN Receive Data Output, Pin RXD
High-Level Output Current

I

OH

–8

–1

mA

Normal mode,
V

RXD

= V

VIO

– 0.4V,

V

VIO

= V

VCC

Low-Level Output Current

I

OL

2

12

mA

Normal mode,
V

RXD

= 0.4V, bus dominant

Bus Lines, Pins CANH and CANL
Single-Ended Dominant
Output Voltage

V

O(dom)

2.75

0.5

3.5
1.5

4.5

2.25

V
V

V

TXD

= 0V,  t <  t

to(dom)TXD

,

R

L

= 50

 to 65,

CANH pin
CANL pin (

Note 1

)

Note 1: Type B: 100% correlation tested.

2: Type C: Characterized on samples.
3: Type D: Design parameter.

Maker
Microchip Technology Inc.
Datasheet PDF Download