24CW16X/24CW32X/24CW64X/24CW128X Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24CW16X-24CW32X-24CW64X-24CW128X-Data-Sheet-20005772B-html.html
background image

 2018 Microchip Technology Inc.

DS20005772B-page 1

24CW16X/24CW32X/24CW64X/24CW128X

Device Selection Table

Features

• 16/32/64/128-Kbit EEPROM:

- Internally organized as one 

2048/4096/8192/16384 x 8 bit block

- Byte or page writes up to 32 bytes
- Byte or sequential reads within a block
- Self-timed write cycle (5 ms maximum)

• High-Speed I

2

C Interface:

- Industry standard: 1 MHz, 400 kHz and 

100 kHz

- Output slope control to eliminate ground 

bounce

- Schmitt trigger inputs for noise suppression

• Programmable Hardware Slave Address Bits:

- Configurable via the Hardware Address 

Register (HAR)

• Versatile Data Protection Options:

- Software write protection via the Write 

Protection Register (WPR)

• Operating Voltage Range of 1.6V to 5.5V
• Low-Power CMOS Technology:

- Write current: 1.0 mA maximum at 5.5V
- Read current: 1.0 mA maximum at 5.5V, 

1 MHz

- Standby Current: 1 µA at 5.5V

• High Reliability:

- More than one million erase/write cycles
- Data retention: >200 years
- ESD protection: >4000V

• RoHS Compliant

Packages

• 8-Lead SOIC, 8-Lead TSSOP, 8-Pad UDFN, 

5-Lead SOT-23 and Two 4-Ball CSP options

Package Types (not to scale)

Pin Function Table

Part Number

Density

Page Size

V

CC

 Range

Package

Temp. Ranges

24CW16X

16-Kbit

32-byte

1.6-5.5

SN, OT, ST, MUY

I

24CW32X

32-Kbit

32-byte

1.6-5.5

SN, OT, ST, MUY

I

24CW64X

64-Kbit

32-byte

1.6-5.5

SN, OT, ST, MUY, CS0, CS1

I

24CW128X

128-Kbit

32-byte

1.6-5.5

SN, OT, ST, MUY, CS0, CS1

I

Note:

‘X’ in the part number refers to the preset hardware slave address. Refer to 

Table 3-2

 for additional information.

Name

Function

V

SS

Ground

SDA

Serial Data Pin

SCL

Serial Clock Input

V

CC

Supply Voltage

8-Pad UDFN

NC
NC

V

SS

NC

SDA

V

CC

8
7

5

1

2

4

NC

3

SCL

6

(Top View)

5-Lead SOT23

(Top View)

8-Lead SOIC/TSSOP

(Top View)

(Top View)

(Top View)

SCL

V

SS

SDA

SDA

V

CC

V

CC

V

CC

V

CC

V

SS

SDA

SCL

SCL

NC

NC

NC

Vss

V

CC

NC

SCL

SDA

1

2

3

4

8

7

6

5

1

2

3

5

4

SCL

V

SS

SDA

NC

V

CC

Note 1:

CS0 CSP ball pitch is 0.4x0.4 mm.

2:

CS1 CSP ball pitch is 0.5x0.4 mm.

4-Ball CSP (CS0)

(

1

)

4-Ball CSP (CS1)

(

2

)

16K-128K I

2

C Serial EEPROM with Software Write 

Protection Family Data Sheet

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24CW16X-24CW32X-24CW64X-24CW128X-Data-Sheet-20005772B-html.html
background image

 2018 Microchip Technology Inc.

DS20005772B-page 2

24CW16X/24CW32X/24CW64X/24CW128X

Description

The 24CW16X/24CW32X/24CW64X/24CW128X
(24CW Series) devices provide 16-128 Kbits of Serial
EEPROM utilizing an I

2

C (2-wire) serial interface. The

24CW Series is organized as 2048/4096/8192/16384
bytes of 8 bits each (2-16 Kbytes). The 24CW Series is
optimized for use in consumer and industrial applica-
tions, where reliable and dependable nonvolatile mem-
ory storage is essential. The 24CW Series allows up to
eight devices to share a common I

2

C (2-wire) bus and is

capable of operation across a broad voltage range (1.6V
to 5.5V).
The 24CW Series contains a pair of programmable
Configuration registers which allow certain device
behaviors to be modified. These registers are the Write
Protection Register and the Hardware Address
Register. 

The Write Protection Register (WPR) controls the valid
address ranges of the EEPROM array that can be writ-
ten. This allows the user to select the write protection
behavior to be configured for software write protection. 
The Hardware Address Register (HAR) controls the
three hardware slave address bits. These bits deter-
mine which device addresses the 24CW Series will
Acknowledge. Because the 24CW Series is a 4-pin
device, the cascadable feature is controlled by the
HAR.
Once the desired software write protection and hardware
slave address bits are set, these Configuration registers
can be permanently locked, thereby preventing any
further changes to the device operation.

System Configuration Using Serial EEPROMs

I

2

C MCU

V

CC

V

CC

SCL

SDA

V

SS

R

PUP(max)

 =

t

R(max)

0.8473 

 C

L

R

PUP(min)

 =

V

CC

  V

OL(max)

I

OL

Programmed

as Slave 0

24CWXXXX

V

CC

SDA

SCL

Programmed

as Slave 1

24CWXXXX

V

CC

SDA

SCL

Programmed

as Slave 7

24CWXXXX

V

CC

SDA

SCL

V

SS

V

SS

V

SS

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24CW16X-24CW32X-24CW64X-24CW128X-Data-Sheet-20005772B-html.html
background image

 2018 Microchip Technology Inc.

DS20005772B-page 3

24CW16X/24CW32X/24CW64X/24CW128X

Block Diagram

1 page

Start

Stop

Detector

V

SS

Memory

System Control

Module

High-Voltage

Generation Circuit

Data & ACK 

Input/Output Control

Address Register

and Counter

Write Protection 

Register

D

OUT

D

IN

V

CC

SCL

SDA

Power-on 

Reset

Generator

EEPROM Array

Column Decoder

Row Decoder

Data Register

Hardware Address

Register

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24CW16X-24CW32X-24CW64X-24CW128X-Data-Sheet-20005772B-html.html
background image

 2018 Microchip Technology Inc.

DS20005772B-page 4

24CW16X/24CW32X/24CW64X/24CW128X

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

(†)

V

CC

.............................................................................................................................................................................6.5V

All inputs and outputs w.r.t. V

SS

................................................................................................................... -0.6V to 6.5V

Storage temperature ...............................................................................................................................-65°C to +150°C
Ambient temperature under bias...............................................................................................................-40°C to +85°C
ESD protection on all pins........................................................................................................................................ >4 kV

† NOTICE:

 Stresses above those listed under ‘Maximum ratings’ may cause permanent damage to the device. This

is a stress rating only and functional operation of the device at those or any other conditions above those indicated in
the operational listings of this specification is not implied. Exposure to maximum rating conditions for an extended
period of time may affect device reliability.

TABLE 1-1:

DC CHARACTERISTICS

DC CHARACTERISTICS

Electrical Characteristics:
Industrial (I):

V

CC

= 1.6V to 5.5V       T

A

= -40°C to +85°C

Param.

No.

Symbol

Characteristic

Min.

Max.

Units

Test Conditions

D1

V

IH

High-Level Input Voltage

V

CC X

0.7 V

CC

 + 0.5

V

D2

V

IL

Low-Level Input Voltage

-0.6

V

CC

 

X

 0.3

V

D3

V

OL

Low-Level Output Voltage

0.4

V

I

OL

= 2.1 mA, V

CC

= 3.0V

0.2

V

I

OL

= 0.15 mA, V

CC

= 1.8V

D4

I

LI

Input Leakage Current

±1

µA

V

IN

 = V

SS

 or V

CC

D5

I

LO

Output Leakage Current

±1

µA

V

OUT

= V

SS

 or V

CC

D6

C

INT

Internal Capacitance 
(all inputs and outputs)

7

pF

T

AMB

= +25°C,  F

CLK

= 1 MHz, 

V

CC

= 5.5V (

Note 1

)

D7

I

CCREAD

Operating Current

0.3

mA

V

CC

= 1.8V,  F

CLK

= 400 kHz

1

mA

V

CC

= 5.5V,  F

CLK

= 1 MHz

D8

I

CCWRITE

Operating Current

1

mA

V

CC

= 5.5V,  F

CLK

= 1 MHz

D9

I

CCS

Standby Current

0.5

µA

SCL = SDA = V

CC

= 1.8V

1.0

µA

SCL = SDA = V

CC

= 5.5V

Note 1:

This parameter is not tested, but is ensured by characterization.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24CW16X-24CW32X-24CW64X-24CW128X-Data-Sheet-20005772B-html.html
background image

 2018 Microchip Technology Inc.

DS20005772B-page 5

24CW16X/24CW32X/24CW64X/24CW128X

FIGURE 1-1:

BUS TIMING DATA

TABLE 1-3:

EEPROM CELL PERFORMANCE CHARACTERISTICS

TABLE 1-2:

AC CHARACTERISTICS

AC CHARACTERISTICS

Electrical Characteristics:
Industrial (I):

 V

CC

 = 1.6V to 5.5V          T

A

 = -40°C to +85°C:

Param.

No.

Symbol

Characteristic

Min.

Max.

Units

Conditions

1

F

CLK

Clock Frequency

1000

kHz

1.6V ≤ V

CC

≤ 5.5V 

2

T

HIGH

Clock High Time

260

ns

1.6V ≤ V

CC

≤ 5.5V

3

T

LOW

Clock Low Time

500

ns

1.6V ≤ V

CC

≤ 5.5V

4

T

R

SDA and SCL Rise Time

1000

ns

1.6V ≤ V

CC

≤ 5.5V (

Note 1

)

5

T

F

SDA and SCL Fall Time

300

ns

1.6V ≤ V

CC

≤ 5.5V (

Note 1

)

6

T

HD

:

STA

Start Condition Hold Time

260

ns

1.6V ≤ V

CC

≤ 5.5V

7

T

SU

:

STA

Start Condition Setup Time

260

ns

1.6V ≤ V

CC

≤ 5.5V

8

T

HD

:

DAT

Data Input Hold Time

0

ns

(

Note 2

)

9

T

SU

:

DAT

Data Input Setup Time

50

ns

1.6V ≤ V

CC

≤ 5.5V

10

T

SU

:

STO

Stop Condition Setup Time

260

ns

1.6V ≤ V

CC

≤ 5.5V

11

T

AA

Output Valid from Clock

450

ns

1.6V ≤ V

CC

≤ 5.5V

12

T

BUF

Bus Free Time: Bus Time 
must be Free before a New 
Transmission can Start

500

ns

1.6V ≤ V

CC

≤ 5.5V

13

T

SP

Input Filter Spike Suppression
(SDA and SCL pins)

50

ns

(

Note 3

)

14

T

WC

Write Cycle Time 
(byte or page)

5

ms

Note 1:

The rise/fall times must be less than the specified maximums in order to achieve the maximum clock 
frequencies specified for F

CLK

. Please refer to the I

2

C specification for applicable timings.

2:

As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region of 
the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3:

Not 100% tested. C

B

 = total capacitance of one bus line in pF.

Operation

Test Condition

Min.

Max.

Units

Write Endurance

(

1

)

T

A

 = 25°C, 1.6V 

V

CC

 

5.5V

1,000,000

Write Cycles

Data Retention

(

1

)

T

A

 = 55°C

200

Years

Note 1:

Performance is determined through characterization and the qualification process.

SCL

SDA

In

SDA

Out

5

7

6

13

3

2

8

9

11

D4

4

10

12

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24CW16X-24CW32X-24CW64X-24CW128X-Data-Sheet-20005772B-html.html
background image

 2018 Microchip Technology Inc.

DS20005772B-page 6

24CW16X/24CW32X/24CW64X/24CW128X

1.1

Power-up Requirements and 
Reset Behavior

During a power-up sequence, the V

CC

 supplied to the

24CW Series should monotonically rise from V

SS

 to the

minimum V

CC

 level, as specified in 

Table 1-1

, with a

slew rate no faster than 0.1V/µs.

1.1.1

DEVICE RESET

To prevent write operations or other spurious events
from happening during a power-up sequence, the
24CW Series includes a Power-on Reset (POR) circuit.
Upon power-up, the device will not respond to any
commands until the V

CC

 level crosses the internal volt-

age threshold (V

POR

) that brings the device out of

Reset and into Standby mode. 

The system designer must ensure that instructions are
not sent to the device until the V

CC

 supply has reached

a stable value greater than, or equal to, the minimum
V

CC

 level. Additionally, once the V

CC

 is greater than, or

equal to, the minimum V

CC

 level, the master must wait

at least T

PUP

 before sending the first command to the

device. See 

Table 1-4

 for the values associated with

these power-up parameters.
If an event occurs in the system where the V

CC

 level

supplied to the 24CW Series drops below the maxi-
mum V

POR

 level specified, it is recommended that a

full-power cycle sequence be performed by first driving
the V

CC

 pin to V

SS

, waiting at least the minimum T

POFF

time and then perform a new power-up sequence
in compliance with the requirements defined in

Section 1.1 “Power-up Requirements and Reset
Behavior”

.

TABLE 1-4:

POWER-UP CONDITIONS

Symbol

Parameter

Min.

Max.

Units

T

PUP

Time Required after V

CC

 is Stable before the Device can Accept Commands

100

µs

V

POR

Power-on Reset Threshold Voltage

1.5

V

T

POFF

Minimum Time at V

CC

= 0V between Power Cycles

1

ms

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24CW16X-24CW32X-24CW64X-24CW128X-Data-Sheet-20005772B-html.html
background image

 2018 Microchip Technology Inc.

DS20005772B-page 7

24CW16X/24CW32X/24CW64X/24CW128X

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in 

Table 2-1

.

2.1

Serial Data (SDA)

This is a bidirectional pin used to transfer addresses
and data into and out of the device. It is an open-drain
terminal, therefore, the SDA bus requires a pull-up
resistor to V

CC

 (typical 10 kΩ for 100 kHz and 2 kΩ for

400 kHz and 1 MHz).
For normal data transfer, SDA is allowed to change
only during SCL low. Changes during SCL high are
reserved for indicating the Start and Stop conditions.

2.2

Serial Clock (SCL)

This input is used to synchronize the data transfer from
and to the device.

TABLE 2-1:

PIN FUNCTION TABLE

Name

8-Lead 

SOIC

8-Lead

TSSOP

5-Lead 

SOT23

8-Lead 

UDFN

(

1

)

4-Ball CSP 

(CS0)

(

2

)

4-Ball CSP 

(CS1)

(

3

)

Function

NC

1

1

1

No Connect

NC

2

2

2

No Connect

NC

3

3

3

No Connect

V

SS

4

4

2

4

A2

B2

Ground

SDA

5

5

3

5

B2

B1

Serial  Data

SCL

6

6

1

6

B1

A2

Serial  Clock

NC

7

7

5

7

No  Connect

V

CC

8

8

4

8

A1

A1

Device  Power  Supply

Note 1:

The exposed pad on this package can be connected to V

SS

 or left floating.

2:

CS0 CSP ball pitch is 0.4x0.4 mm.

3:

CS1 CSP ball pitch is 0.5x0.4 mm.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24CW16X-24CW32X-24CW64X-24CW128X-Data-Sheet-20005772B-html.html
background image

 2018 Microchip Technology Inc.

DS20005772B-page 8

24CW16X/24CW32X/24CW64X/24CW128X

3.0

MEMORY ORGANIZATION

3.1

EEPROM Organization

The 24CW Series is internally organized as
64/128/256/512 pages of 32 bytes each, depending on
the density.

3.2

Device Configuration Registers

The 24CW Series contains two Configuration registers
that modulate device operation and/or report on the
current status of the device. These registers are:
• Write Protection Register (WPR)
• Hardware Address Register (HAR)
Once the device behavior is set as desired, the Config-
uration registers can be permanently locked (or set to
read-only), thereby preventing any subsequent
changes.

3.2.1

WRITE PROTECTION REGISTER

The Write Protection Register (WPR) allows for modifi-
cation of the device write protection behavior. Refer to

Section 8.2 “Write Protection Register”

 for additional

information of the WPR.

3.2.2

HARDWARE ADDRESS REGISTER

The Hardware Address Register (HAR) allows for
modification of the hardware slave address bits in the
device address byte that the device will Acknowledge.
Refer to 

Section 8.3 “Hardware Address Register”

for additional information on the HAR.

3.3

Device Addressing

Communication with the 24CW Series begins with an
8-bit device address byte, comprised of a 7-bit slave
address and a Read/Write Select (R/W) bit. Since
multiple slave devices can reside on the serial bus,
each slave device must have its own unique device
address, programmed in the HAR, so that the master
can access each device independently.
The 7-bit slave address is constructed using two
groups of bits. The first four bits contain the Device
Type Identifier, followed by three bits containing the
hardware slave address bits. 
The 24CW Series will respond to only specific Device
Type Identifiers, as shown in 

Section 3.3.1 “Valid

Device Address Byte Inputs”

.

The 3-bit hardware slave address is comprised of
bits A2, A1 and A0. These bits can be used to expand
the address space by allowing up to eight devices with
the same Device Type Identifiers on the bus. These
hardware slave address bits must correlate with the
values programmed in the HAR. 
The device will respond to all valid device address byte
combinations that it receives.

3.3.1

VALID DEVICE ADDRESS BYTE 
INPUTS

The 24CW Series will respond to the Device Type
Identifiers, as shown in 

Table 3-1

.

3.3.1.1

Preset Slave Addresses

The 24CW Series is preset with a specific slave
address. The preset slave address bits are embedded
in the base part number, as shown in 

Table 3-2

.

TABLE 3-1:

TABLE OF VALID DEVICE ADDRESS BYTES

Access Region

Device Type Identifier

Hardware Slave Address

Read/Write 

Select

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

 EEPROM

1

0

1

0

A2

A1

A0

R/W

Configuration Registers

1

0

1

0

A2

A1

A0

R/W

Note:

The access region is selected according to bit 7 of the first word address byte. Refer to 

Section 3.3.2

“Word Address Bytes”

 for additional information.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24CW16X-24CW32X-24CW64X-24CW128X-Data-Sheet-20005772B-html.html
background image

 2018 Microchip Technology Inc.

DS20005772B-page 9

24CW16X/24CW32X/24CW64X/24CW128X

TABLE 3-2:

DEVICE PRESET SLAVE 
ADDRESS 

3.3.1.2

Read/Write Select Bit

The eighth bit (bit 0) of the device address byte is the
Read/Write Select (R/W) bit. A read operation is
initiated if this bit is a logic ‘1’ and a write operation is
initiated if this bit is a logic ‘0’.
Upon the successful comparison of the device address
byte, the 24CW Series will respond. If a valid compari-
son is not made, the device will not respond and return
to a standby state.

3.3.2

WORD ADDRESS BYTES

Two 8-bit word address bytes are transmitted to the
device immediately following the device address byte.
The first word address byte contains the Most Signifi-
cant bits (MSbs) of the memory array word address to
specify which location in the EEPROM to start reading
or writing. Note that the number of word address bits
depends on the density. Refer to 

Table 3-3

 for details.

When accessing the memory array, it is required that
bit 7 of the word address byte be set to a logic ‘0’.
When accessing the Configuration registers, it is
required that bit 7 of the first word address byte be set
to a logic ‘1’. Refer to 

Table 3-3

 for details.

Next, the second word address byte is sent to the device
which provides the remaining eight bits of the word
address (A7 through A0). Refer to 

Table 3-4

 for details.

TABLE 3-3:

FIRST WORD ADDRESS BYTE

TABLE 3-4:

SECOND WORD ADDRESS BYTE

Part Number Series

24CWXXXX

Hardware Slave 

Address Bits

A2

A1

A0

24CWXXX0

(

1

)

0

0

0

24CWXXX1

(

1

,

2

)

0

0

1

24CWXXX2

(

1

,

2

)

0

1

0

24CWXXX3

(

1

,

2

)

0

1

1

24CWXXX4

(

1

,

2

)

1

0

0

24CWXXX5

(

1

,

2

)

1

0

1

24CWXXX6

(

1

,

2

)

1

1

0

24CWXXX7

(

1

,

2

)

1

1

1

Note 1:

‘XXX’ in the part number varies depending 
on the density. 

2:

Contact your local sales representative for 
hardware slave address availability.

Memory Region

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

16-Kbit EEPROM

0

x

x

x

x

A10

A9

A8

32-Kbit EEPROM

0

x

x

x

A11

A10

A9

A8

64-Kbit EEPROM

0

x

x

A12

A11

A10

A9

A8

128-Kbit EEPROM

0

x

A13

A12

A11

A10

A9

A8

Configuration Registers

1

x

x

x

x

x

x

x

Memory Region

Bit 7

Bit 6

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

16-Kbit EEPROM

A7

A6

A5

A4

A3

A2

A1

A0

32-Kbit EEPROM

A7

A6

A5

A4

A3

A2

A1

A0

64-Kbit EEPROM

A7

A6

A5

A4

A3

A2

A1

A0

128-Kbit EEPROM

A7

A6

A5

A4

A3

A2

A1

A0

Configuration Registers

(

1

)

x

x

x

x

x

x

x

x

Note 1:

When accessing the Configuration registers, the second word address byte must be transmitted to the 
device despite containing only don’t care values.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/24CW16X-24CW32X-24CW64X-24CW128X-Data-Sheet-20005772B-html.html
background image

 2018 Microchip Technology Inc.

DS20005772B-page 10

24CW16X/24CW32X/24CW64X/24CW128X

4.0

FUNCTIONAL DESCRIPTION

The 24CW Series supports a bidirectional 2-wire bus
and data transmission protocol. A device that sends
data onto the bus is defined as a transmitter and a
device receiving data as a receiver. The bus must be
controlled by a master which generates the Serial
Clock (SCL), controls the bus access and generates
the Start and Stop conditions, while the 24CW Series
works as a slave. Both master and slave can operate
as a transmitter or receiver, but the master determines
which mode is activated.

5.0

BUS CHARACTERISTICS

The following bus protocol has been defined:
• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line, while the clock line is high, will be 
interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been
defined (

Figure 5-1

).

5.1

Bus Not Busy (A)

Both data and clock lines remain high.

5.2

Start Data Transfer (B)

A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.

5.3

Stop Data Transfer (C)

A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must end with a Stop condition.

5.4

Data Valid (D)

The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.
The data on the line must be changed during the low
period of the clock signal. There is one bit of data per
clock pulse.
Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master.

5.5

Acknowledge

Each receiving device, when addressed, is obliged to
generate an Acknowledge signal after the reception of
each byte. The master must generate an extra clock
pulse, which is associated with this Acknowledge bit.
See 

Figure 5-2

 for Acknowledge timing.

A device that Acknowledges must pull down the SDA
line during the Acknowledge clock pulse, in such a way,
that the SDA line is stable low during the high period of
the Acknowledge related clock pulse. Of course, setup
and hold times must be taken into account. During read
operations, the master must signal an end of data to the
slave by NOT generating an Acknowledge (NACK) bit
on the last byte that has been clocked out of the slave.
In this case, the slave (24CW Series) will leave the data
line high to enable the master to generate the Stop
condition.

FIGURE 5-1:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS

Note:

The 24CW Series does not generate
any Acknowledge bits if an internal
programming cycle is in progress.

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

Start

Condition

SCL

SDA

(A)

(B)

(D)

(D)

(C)

(A)

Maker
Microchip Technology Inc.
Datasheet PDF Download