21416D.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21416D-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21416D-page  1

TC429

Features

• High Peak Output Current: 6A

• Wide Input Supply Voltage Operating Range:

-  7V to 18V

• High-Impedance CMOS Logic Input

• Logic Input Threshold Independent of Supply

Voltage

• Low Supply Current:

- With Logic ‘1’ Input – 5 mA max.

- With Logic ‘0’ Input – 0.5 mA max.

• Output Voltage Swing Within 25 mV of Ground

or V

DD

• Short Delay Time: 75 nsec max

• Available in the Space-Saving 8-Pin SOIC

Package.

• High Capacitive Load Drive Capability:

- t

RISE

, t

FALL

 = 35 nsec max with

C

LOAD

 = 2500 pF

Applications

• Switch-Mode Power Supplies

• CCD Drivers

• Pulse Transformer Drive

• Class D Switching Amplifiers

Package Types

General Description

The TC429 is a high-speed, single output, CMOS-level 
translator and driver. Designed specifically to drive 
highly capacitive power MOSFET gates, the TC429 
features a 2.5

 output impedance and 6A peak output 

current drive.

A 2500 pF capacitive load will be driven to 18V in 
25 

nsec. The rapid switching times with large 

capacitive loads minimize MOSFET switching power 
losses.

A TTL/CMOS input logic level is translated into an 
output voltage swing that equals the supply voltage and 
will swing to within 25 mV of ground or V

DD

. Input volt-

age swing may equal the supply voltage. Logic input 
current is under 10 µA, making direct interface to 
CMOS/bipolar switch-mode power supply controllers 
easy. Input “speed-up” capacitors are not required.

The CMOS design minimizes quiescent power supply 
current. With a logic ‘1’ input, power supply current is 
5 mA maximum and decreases to 0.5 mA for logic ‘0’
inputs.

For dual output MOSFET drivers, see the TC426/
TC427/TC428 (DS21415), TC4426/TC4427/TC4428
(DS21422) and TC4426A/TC4427A/TC4428A 
(DS21423) data sheets.

For non-inverting applications, or applications requiring 
latch-up protection, see the TC4420/TC4429 
(DS21419) data sheet.

CERDIP/PDIP/SOIC

1

2

3

4

V

DD

5

6

7

8

OUTPUT

GND

V

DD

INPUT

NC

GND

OUTPUT

TC429

NC = No Internal Connection
Note: Duplicate pins must both be connected for

proper operation.

6A Single High-Speed, CMOS Power MOSFET Driver

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21416D-html.html
background image

TC429

DS21416D-page  2

 2002-2012 Microchip Technology Inc.

Functional Block Diagram   

Effective 

Input C = 38 pF 

TC429

Output

Input

GND

V

DD

300 mV 
 

1,8

6,7

2

4,5

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21416D-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21416D-page  3

TC429

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage ..................................................... +20V

Input Voltage, Any Terminal

         ................................... V

DD

 + 0.3V to GND – 0.3V

Power Dissipation (T

A

 

70°C)

 PDIP ............................................................ 730 

mW

 CERDIP ....................................................... 800 

mW

 SOIC............................................................ 470 

mW

Storage Temperature Range.............. -65°C to +150°C

Maximum Junction Temperature, T

J

 ............... +150°C

 Stresses above those listed under "Absolute Maximum 
Ratings" may cause permanent damage to the device. These 
are stress ratings only and functional operation of the device 
at these or any other conditions above those indicated in the 
operation sections of the specifications is not implied. 
Exposure to Absolute Maximum Rating conditions for 
extended periods may affect device reliability.

PIN FUNCTION TABLE   

DC ELECTRICAL CHARACTERISTICS 

Symbol

Description

V

DD

Supply input, 7V to 18V

INPUT

Control input. TTL/CMOS compatible

logic input

NC

No connection

GND

Ground

GND

Ground

OUTPUT

CMOS push-pull, common to pin 7

OUTPUT

CMOS push-pull, common to pin 6

V

DD

Supply input, 7V to 18V

Electrical Specifications: Unless otherwise noted, T

A

 = +25°C with 7V 

 V

DD

 

 18V.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Input

Logic ‘1’, High Input Voltage

V

IH

2.4

1.8

V

Logic ‘0’, Low Input Voltage

V

IL

1.3

0.8

V

Input Current

I

IN

-10

10

µA

0V

V

IN

V

DD

Output

High Output Voltage

V

OH

V

DD

 – 0.025

V

Low Output Voltage

V

OL

0.025

V

Output Resistance

R

O

1.8

2.5

V

IN

 = 0.8V,

V

OUT

 = 10 mA, V

DD

 = 18V

1.5

2.5

V

IN

 = 2.4V,

V

OUT

 = 10 mA, V

DD

 = 18V

Peak Output Current

I

PK

6.0

A

V

DD

 = 18V, Figure 4-4

Latch-Up Protection 
Withstand Reverse Current

I

REV

0.5

A

Duty cycle

2%, t 300 µsec,

V

DD

 = 16V

Switching Time (Note 1)

Rise Time

t

R

23

35

nsec

C

L

 = 2500 pF, Figure 4-1

Fall Time

t

F

25

35

nsec

C

L

 = 2500 pF, Figure 4-1

Delay Time

t

D1

53

75

nsec

Figure 4-1

Delay Time

t

D2

60

75

nsec

Figure 4-1

Power Supply

Power Supply Current

I

S

3.5

5.0

mA

V

IN

 = 3V

0.3

0.5

V

IN

 = 0V

Note 1: Switching times ensured by design.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21416D-html.html
background image

TC429

DS21416D-page  4

 2002-2012 Microchip Technology Inc.

DC ELECTRICAL CHARACTERISTICS (CONTINUED) 

TEMPERATURE CHARACTERISTICS   

Electrical Specifications: Unless otherwise noted, over operating temperature range with 7V 

 V

DD

 

 18V.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Input

Logic ‘1’, High Input Voltage

V

IH

2.4

V

Logic ‘0’, Low Input Voltage

V

IL

0.8

V

Input Current

I

IN

-10

10

µA

0V

V

IN

V

DD

Output

High Output Voltage

V

OH

V

DD

 – 0.025

V

Low Output Voltage

V

OL

0.025

V

Output Resistance

R

O

5.0

V

IN

 = 0.8V,

V

OUT

 = 10 mA, V

DD

 = 18V

5.0

V

IN

 = 2.4V,

V

OUT

 = 10 mA, V

DD

 = 18V

Switching Time (Note 1)

Rise Time

t

R

70

nsec

C

L

 = 2500 pF, Figure 4-1

Fall Time

t

F

70

nsec

C

L

 = 2500 pF, Figure 4-1

Delay Time

t

D1

100

nsec

Figure 4-1

Delay Time

t

D2

120

nsec

Figure 4-1

Power Supply

Power Supply Current

I

S

12

mA

V

IN

 = 3V

1.0

V

IN

 = 0V

Note 1: Switching times ensured by design.

Electrical Specifications: Unless otherwise noted, T

A

 = +25°C with 7V 

 V

DD

 

 18V.

Parameters

Sym

Min

Typ

Max

Units

Conditions

Temperature Ranges

Specified Temperature Range (C)

T

A

0

+70

ºC

Specified Temperature Range (E)

T

A

-40

+85

ºC

Specified Temperature Range (M)

T

A

-55

+125

ºC

Maximum Junction Temperature

T

J

+150

ºC

Storage Temperature Range

T

A

-65

+150

ºC

Package Thermal Resistances

Thermal Resistance, 8L-CERDIP

JA

150

ºC/W

Thermal Resistance, 8L-PDIP

JA

125

ºC/W

Thermal Resistance, 8L-SOIC

JA

155

ºC/W

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21416D-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21416D-page  5

TC429

2.0

TYPICAL PERFORMANCE CURVES   

Note: Unless otherwise indicated, T

A

 = +25°C with 7V 

 V

DD

 

 18V.

FIGURE 2-1:

Rise/Fall Times vs. Supply 

Voltage.

FIGURE 2-2:

Rise/Fall Times vs. 

Temperature.

FIGURE 2-3:

Rise/Fall Times vs. 

Capacitive Load.

FIGURE 2-4:

Supply Current vs. 

Capacitive Load.

FIGURE 2-5:

Delay Times vs. 

Temperature.

FIGURE 2-6:

Delay Times vs. Supply 

Voltage.

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of 
samples and are provided for informational purposes only. The performance characteristics listed herein 
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified 
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

60

50

40

30

20

10

5

10

15

20

SUPPLY VOLTAGE (V)

TIME (nsec)

T

A

 = +25

°C

C

L

 = 2500 pF

t

R

t

F

    

60

50

40

30

20

10

0

75

TEMPERATURE (

°C)

TIME (nsec)

C

L

 = 2500 pF

V

DD

 = +15V

-50 -25

25 50

100 125 150

t

R

t

F

    

100

10

1

100

1K

10K

CAPACITIVE LOAD (pF)

TIME (nsec)

t

R

t

F

    

T

A

 = +25

°C

V

DD

 = +15V

70

60

50

40

30

20

10

0

SUPPLY CURRENT (mA)

10

100

1K

10K

CAPACITIVE LOAD (pF)

200 kHz

20 kHz

T

A

 = +25

°C

V

DD

 = +15V

400 kHz

90

80

70

60

50

40

0

75

TEMPERATURE (

°C)

 DELAY TIME (nsec)

-50 -25

25 50

100 125

t

D2

t

D1

C

L

 = 2500 pF

V

DD

 = +15V

150

140

120

100

80

60

40

5

DELAY TIME (nsec)

10

15

20

SUPPLY VOLTAGE (V)

t

D1

t

D2

T

A

 = +25

°C

C

L

 = 2500 pF

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21416D-html.html
background image

TC429

DS21416D-page  6

 2002-2012 Microchip Technology Inc.

Note: Unless otherwise indicated, T

A

 = +25°C with 7V 

 V

DD

 

 18V.

FIGURE 2-7:

Supply Current vs. 

Frequency.

FIGURE 2-8:

Supply Current vs. Supply 

Voltage.

FIGURE 2-9:

Supply Current vs. 

Temperature.

.

FIGURE 2-10:

Voltage Transfer 

Characterstics.

FIGURE 2-11:

High Output Voltage     

(V

DD

-V

OH

) vs. Output Source Current.

FIGURE 2-12:

Low Output Voltage vs. 

Output Sink Current.

50

40

30

20

10

0

1

10

100

1K

15V

10V

V

DD

 = 18V

5V

T

A

 = +25

°C

C

L

 = 2500 pF

SUPPLY CURRENT (mA)

FREQUENCY (kHz)

4

2

0

4

8

12

16

20

SUPPLY CURRENT (mA)

SUPPLY VOLTAGE (V)

T

A

 = +25

°C

R

L

 = 

INPUT LOGIC "1"

4

3

2

-75

-25

50

100

150

SUPPLY CURRENT (mA)

TEMPERATURE (

°C)

-50

0

25

75

125

V

DD

 = +18

°C

R

L

 = 

INPUT LOGIC "1"

HYSTERESIS

310 mV

200 mV

300 mV

20

15

10

5

0

1.25

0.25 0.50 0.75

1

1.50 1.75

2

T

A

 = +25

°C

OUTPUT VOLTAGE (V)

INPUT VOLTAGE (V)

OUTPUT VOLTAGE (mV)

400

300

200

100

SOURCE CURRENT (mA)

0

20

40

60

80

100

V

DD

 = 5V

 10V

 15V

 18V

T

A

 = +25

°C

OUTPUT VOLTAGE (mV)

400

300

200

100

SINK CURRENT (mA)

0

20

40

60

80

100

V

DD

 = 5V

 10V

 15V

 18V

T

A

 = +25

°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21416D-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21416D-page  7

TC429

3.0

PIN DESCRIPTIONS   

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1:

PIN FUNCTION TABLE

   

3.1

Supply Input (V

DD

)

The V

DD

 input is the bias supply for the MOSFET driver 

and is rated for 7.0V to 18V with respect to the ground 
pin. The V

DD

 input should be bypassed to ground with 

a local ceramic capacitor. The value of the capacitor 
should be chosen based on the capacitive load that is 
being driven. A value of 1.0 µF is suggested.

3.2

Control Input (INPUT)

The MOSFET driver input is a high-impedance, 
TTL/CMOS compatible input. The input also has 
300 mV of hysteresis between the high and low thresh-
olds that prevents output glitching even when the rise 
and fall time of the input signal is very slow.

3.3

CMOS Push-Pull Output 
(OUTPUT)

The MOSFET driver output is a low-impedance, CMOS 
push-pull style output, capable of driving a capacitive 
load with 6.0A peak currents.

3.4

Ground (GND)

The ground pins are the return path for the bias current 
and for the high peak currents that discharge the load 
capacitor. The ground pins should be tied into a ground 
plane or have very short traces to the bias supply 
source return.

3.5

No Connect (NC)

No connection.

Pin No.

Symbol

Description

1

V

DD

Supply input, 7V to 18V

2

INPUT

Control input. TTL/CMOS compatible logic input

3

NC

No connection

4

GND

Ground

5

GND

Ground

6

OUTPUT

CMOS push-pull output, common to pin 7

7

OUTPUT

CMOS push-pull output, common to pin 6

8

V

DD

Supply input, 7V to 18V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21416D-html.html
background image

TC429

DS21416D-page  8

 2002-2012 Microchip Technology Inc.

4.0

APPLICATIONS INFORMATION

4.1

Supply Bypassing

Charging and discharging large capacitive loads 
quickly requires large currents. For example, charging 
a 2500 pF load to 18V in 25 nsec requires a 1.8A
current from the device's power supply.

To ensure low supply impedance over a wide frequency 
range, a parallel capacitor combination is recom-
mended for supply bypassing. Low-inductance ceramic 
disk capacitors with short lead lengths (< 0.5 in.) should 
be used. A 1 µF film capacitor in parallel with one or two 
0.1 

µF ceramic disk capacitors normally provides 

adequate bypassing.

4.2

Grounding

The high-current capability of the TC429 demands 
careful PC board layout for best performance. Since 
the TC429 is an inverting driver, any ground lead 
impedance will appear as negative feedback that can 
degrade switching speed. The feedback is especially 
noticeable with slow rise-time inputs, such as those 
produced by an open-collector output with resistor pull-
up. The TC429 input structure includes about 300 mV 
of hysteresis to ensure clean transitions and freedom 
from oscillation, but attention to layout is still 
recommended.

Figure 4-3 shows the feedback effect in detail. As the 
TC429 input begins to go positive, the output goes 
negative and several amperes of current flow in the 
ground lead. A PC trace resistance of as little as 0.05

can produce hundreds of millivolts at the TC429 ground 
pins. If the driving logic is referenced to power ground, 
the effective logic input level is reduced and oscillations 
may result.

To ensure optimum device performance, separate 
ground traces should be provided for the logic and 
power connections. Connecting logic ground directly to 
the TC429 GND pins ensures full logic drive to the input 
and fast output switching. Both GND pins should be 
connected to power ground.

FIGURE 4-1:

Inverting Driver Switching 

Time Test Circuit.

FIGURE 4-2:

Switching Speed.

C

L

 = 2500 pF

0.1 µF

1 µF

Input

V

DD

 = 18V

Output

Input: 100 kHz,

square wave,

t

RISE

 = t

FALL

 

 10 nsec

4, 5

2

6, 7

1, 8

TC429

t

R

Output

Input

t

D1

t

F

t

D2

+5V

10%

90%

10%

90%

10%

90%

18V

0V

0V

TIME (100ns/DIV)

V

O

L

T

A

GE (5V/DIV)

CL = 2500pF
V

S

 = 18V

5V

INPUT

OUTPUT

100ns

TIME (100ns/DIV)

V

O

L

T

A

GE (5V/DIV)

CL = 2500pF
V

S

 = 7V

5V

INPUT

OUTPUT

100ns

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21416D-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21416D-page  9

TC429

FIGURE 4-3:

Switching Time Degradation 

Due To Negative Feedback.

4.3

Input Stage

The input voltage level changes the no-load or 
quiescent supply current. The N-channel MOSFET 
input stage transistor drives a 3 mA current source 
load. With a logic ‘1’ input, the maximum quiescent 
supply current is 5 mA. Logic ‘0’ input level signals 
reduce quiescent current to 500 µA maximum.

The TC429 input is designed to provide 300 mV of 
hysteresis, providing clean transitions and minimizing 
output stage current spiking when changing states. 
Input voltage levels are approximately 1.5V, making the 
device TTL-compatible over the 7V to 18V operating 
supply range. Input pin current draw is less than 10 µA 
over this range.

The TC429 can be directly driven by TL494, SG1526/
1527, SG1524, SE5560 or similar switch-mode 
power supply integrated circuits. By off-loading the 
power-driving duties to the TC429, the power supply 
controller can operate at lower dissipation, improving 
performance and reliability.

FIGURE 4-4:

Peak Output Current Test 

Circuit.

4.4

Power Dissipation

CMOS circuits usually permit the user to ignore power 
dissipation. Logic families such as the 4000 and 74C 
have outputs that can only supply a few milliamperes of 
current, and even shorting outputs to ground will not 
force enough current to destroy the device. The TC429,
however, can source or sink several amperes and drive 
large capacitive loads at high frequency. Since the 
package power dissipation limit can easily be 
exceeded, some attention should be given to power 
dissipation when driving low-impedance loads and/or 
operating at high frequency.

The supply current versus frequency and supply 
current versus capacitive load characteristic curves will 
aid in determining power dissipation calculations. 
Table 4-1 lists the maximum operating frequency for 
several power supply voltages when driving a 2500 pF 
load. More accurate power dissipation figures can be 
obtained by summing the three components that make 
up the total device power dissipation.

Input signal duty cycle, power supply voltage and 
capacitive load influence package power dissipation. 
Given power dissipation and package thermal resis-
tance, the maximum ambient operation temperature 
is easily calculated. The 8-pin CERDIP junction-to-
ambient thermal resistance is 150

C/W. At +25C, the 

package is rated at 800 mW maximum dissipation. 
Maximum allowable junction temperature is +150

C.

Three components make up total package power 
dissipation:

• Capacitive load dissipation (P

C

)

• Quiescent power (P

Q

)

• Transition power (P

T

)

The capacitive load-caused dissipation is a direct 
function of frequency, capacitive load and supply 
voltage.

TC429

1 µF

0.1 µF

0.1 µF

0V

18V

2.4V

0V

Logic

Ground

Power

Ground

300 mV

6A

PC Trace Resistance = 0.05

2500 pF

1

8 6,7
5

4

2

+18V

TEK Current

Probe 6302

TC429

1 µF

0.1 µF

0.1 µF

0V

18V

2.4V

0V

2500 pF

1

8

6,7

5

4

2

TEK Current

Probe 6302

+18V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21416D-html.html
background image

TC429

DS21416D-page  10

 2002-2012 Microchip Technology Inc.

The device capacitive load dissipation is: 

EQUATION

Quiescent power dissipation depends on input signal 
duty cycle. A logic low input results in a low-power 
dissipation mode with only 0.5 mA total current drain. 
Logic-high signals raise the current to 5 mA maximum.

The quiescent power dissipation is:

EQUATION

 

Transition power dissipation arises because the output 
stage N- and P-channel MOS transistors are ON 
simultaneously for a very short period when the output 
changes.

The device transition power dissipation is approxi-
mately:

EQUATION

An example shows the relative magnitude for each 
item.  

TABLE 4-1:

MAXIMUM OPERATING 
FREQUENCIES 

 

FIGURE 4-5:

Peak Output Current 

Capability.

4.5

POWER-ON OSCILLATION

Power-on oscillations are due to trace size, layout and 
component placement. A ‘quick fix’ for most applica-
tions that exhibit power-on oscillation problems is to 
place approximately 10 k

 in series with the input of 

the MOSFET driver.

C

= 2500 pF

V

S

= 15V

D

= 50%

f

= 200 kHz

P

D

= Package power dissipation:

= P

C

 + P

T

 + P

Q

= 113 mW + 10 mW + 41 mW

= 164 mW

Maximum ambient operating temperature:

= T

J

 – 

JA

 (P

D

)

= 150ºC - (150ºC/W)(0.164W)

= 125

C

Where:

T

J

= Maximum allowable junction temperature 
(+150

C)

JA

= Junction-to-ambient thermal resistance    
(150

C/W, CERDIP)

P

C

fCV

S

2

=

Where:

f = Switching frequency
C = Capacitive load
V

S

 = Supply voltage

P

Q

V

S

D I

H

1

D

I

L

+

=

Where:

I

H

 = Quiescent current with input high

I

L

 = Quiescent current with input low

D = Duty cycle

(5 mA max)

(0.5 mA max)

P

T

fV

S

3.3

10

9

A

Sec

=

Note:

Ambient operating temperature should not 
exceed +85ºC for EPA or EOA devices or 
+125ºC for MJA devices.

V

S

f

MAX

18V

500 kHz

15V

700 kHz

10V

1.3 MHz

5V

>2 MHz

Conditions:

1.

CERDIP Package (

JA

 =150

C/W)

2.

T

A

 = +25

C

3.

C

L

 = 2500 pF

Note:

It is extremely important that all MOSFET 
driver applications be evaluated for the 
possibility of having high-power oscillations 
occur during the power-on cycle.

TIME (5

μs/DIV)

V

S

 = 18V

R

L

 = 0.1

Ω

5V

INPUT

OUTPUT

5

μs

500mV

5V/DIV

500mV/DIV

(5 AMP/DIV)

Maker
Microchip Technology Inc.
Datasheet PDF Download