21415D.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21415D-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21415D-page 1

TC426/TC427/TC428

Features:

• High-Speed Switching (C

L

 = 1000 pF): 30 nsec

• High Peak Output Current: 1.5A

• High Output Voltage Swing:

- V

DD

 -25 mV

- GND +25 mV

• Low Input Current (Logic ‘0’ or ‘1’): 1 

A

• TTL/CMOS Input Compatible

• Available in Inverting and Noninverting 

Configurations

• Wide Operating Supply Voltage:

- 4.5V to 18V

• Current Consumption:

- Inputs Low – 0.4 mA

- Inputs High – 8 mA

• Single Supply Operation 

• Low Output Impedance: 6

• Pinout Equivalent of DS0026 and MMH0026

• Latch-Up Resistant: Withstands > 500 mA 

Reverse Current

• ESD Protected: 2 kV

Applications:

• Switch Mode Power Supplies

• Pulse Transformer Drive

• Clock Line Driver

• Coax Cable Driver

Device Selection Table

Package Type

General Description:

The TC426/TC427/TC428 are dual CMOS high-speed
drivers. A TTL/CMOS input voltage level is translated
into a rail-to-rail output voltage level swing. The CMOS
output is within 25 mV of ground or positive supply. 

The low-impedance, high-current driver outputs swing
a 1000 pF load 18V in 30 nsec. The unique current and
voltage drive qualities make the TC426/TC427/TC428
ideal power MOSFET drivers, line drivers, and DC-to-
DC converter building blocks.

Input logic signals may equal the power supply voltage.
Input current is a low 1 

A, making direct interface

to CMOS/bipolar switch-mode power supply control
ICs possible, as well as open-collector analog
comparators.

Quiescent power supply current is 8 mA maximum. The
TC426 requires 1/5 the current of the pin-compatible
bipolar DS0026 device. This is important in DC-to-DC
converter applications with power efficiency constraints
and high-frequency switch-mode power supply
applications. Quiescent current is typically 6 mA when
driving a 1000 pF load 18V at 100 kHz.

The inverting TC426 driver is pin-compatible with the
bipolar DS0026 and MMH0026 devices. The TC427 is
noninverting; the TC428 contains an inverting and non-
inverting driver.

Other pin compatible driver families are the TC1426/
TC1427/TC1428, TC4426/TC4427/TC4428 and
TC4426A/TC4427A/TC4428A.

Part

Number

Package

Configuration

Temp.

Range

TC426COA
TC426CPA
TC426EOA
TC426EPA
TC426IJA
TC426MJA

8-Pin SOIC

8-Pin PDIP

8-Pin SOIC

8-Pin PDIP

8-Pin CERDIP
8-Pin CERDIP

Inverting
Inverting
Inverting
Inverting
Inverting
Inverting

0°C to +70°C
0°C to +70°C

-40°C to +85°C
-40°C to +85°C
-25°C to +85°C

-55°C to +125°C

TC427COA
TC427CPA
TC427EOA
TC427EPA
TC427IJA
TC427MJA

8-Pin SOIC

8-Pin PDIP

8-Pin SOIC

8-Pin PDIP

8-Pin CERDIP
8-Pin CERDIP

Noninverting
Noninverting
Noninverting
Noninverting
Noninverting
Noninverting

0°C to +70°C
0°C to +70°C

-40°C to +85°C
-40°C to +85°C
-25°C to +85°C

-55°C to +125°C

TC428COA
TC428CPA
TC428EOA
TC428EPA
TC428IJA
TC428MJA

8-Pin SOIC

8-Pin PDIP

8-Pin SOIC

8-Pin PDIP

8-Pin CERDIP
8-Pin CERDIP

Complementary
Complementary
Complementary
Complementary
Complementary
Complementary

0°C to +70°C
0°C to +70°C

-40°C to +85°C
-40°C to +85°C
-25°C to +85°C

-55°C to +125°C

TC426

1

2

3

4

NC

5

6

7

8

OUT A

OUT B

NC

IN A

GND

IN B

NC = No internal connection

2, 4

7, 5

Inverting

TC427

1

2

3

4

NC

5

6

7

8

OUT A

OUT B

NC

IN A

GND

IN B

2, 4

7, 5

Noninverting

TC428

1

2

3

4

NC

5

6

7

8

OUT A

OUT B

NC

IN A

GND

IN B

2

7

4

5

V

DD

Complementary

V

DD

V

DD

8-Pin PDIP/SOIC/CERDIP

1.5A Dual High-Speed Power MOSFET Drivers

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21415D-html.html
background image

TC426/TC427/TC428

DS21415D-page 2

 2002-2012 Microchip Technology Inc.

Functional Block Diagram

Input

V+

≈2.5 

μ

A

≈500 

μ

A

NOTE: TC428 has one inverting and one noninverting driver.
             Ground any unused driver input.

Inverting

Output

Noninverting

Output

(TC426)

(TC427)

GND

TC426
TC427
TC428

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21415D-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21415D-page 3

TC426/TC427/TC428

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings*

Supply Voltage ..................................................... +20V

Input Voltage, Any Terminal
         ................................... V

DD

 + 0.3V to GND – 0.3V

Power Dissipation (T

A

 

70°C)

        PDIP........................................................ 730 mW
        CERDIP .................................................. 800 mW
        SOIC ....................................................... 470 mW

Derating Factor
        PDIP....................................................... 8 mW/°C
        CERDIP .............................................. 6.4 mW/°C
        SOIC ...................................................... 4 mW/°C

Operating Temperature Range
        C Version ........................................ 0°C to +70°C
        I Version ....................................... -25°C to +85°C
        E Version...................................... -40°C to +85°C
        M Version ................................... -55°C to +125°C

Storage Temperature Range .............. -65°C to +150°C

*Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to
the device. These are stress ratings only and functional
operation of the device at these or any other conditions
above those indicated in the operation sections of the
specifications is not implied. Exposure to Absolute
Maximum Rating conditions for extended periods may
affect device reliability.

TC426/TC427/TC428 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: T

A

 = +25°C with 4.5V 

V

DD

18V, unless otherwise noted.

Symbol

Parameter

Min

Typ

Max

Units

Test Conditions

Input

V

IH

Logic 1, High Input Voltage

2.4

V

V

IL

Logic 0, Low Input Voltage

0.8

V

I

IN

Input Current

-1

1

A

0V

V

IN

V

DD

Output

V

OH

High Output Voltage

V

DD

 – 0.025

V

V

OL

Low Output Voltage

0.025

V

R

OH

High Output Resistance

10

15

I

OUT

 = 10 mA, V

DD

 = 18V

R

OL

Low Output Resistance

6

10

I

OUT

 = 10 mA, V

DD

 = 18V

I

PK

Peak Output Current

1.5

A

Switching Time (Note 1)

t

R

Rise Time

30

nsec

Figure 3-1, Figure 3-2

t

F

Fall Time

30

nsec

Figure 3-1, Figure 3-2

t

D1

Delay Time

50

nsec

Figure 3-1, Figure 3-2

t

D2

Delay Time

75

nsec

Figure 3-1, Figure 3-2

Power Supply

I

S

Power Supply Current



8

0.4

mA

V

IN

 = 3V (Both Inputs)

V

IN

 = 0V (Both Inputs)

Note

1:

Switching times ensured by design.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21415D-html.html
background image

TC426/TC427/TC428

DS21415D-page 4

 2002-2012 Microchip Technology Inc.

TC426/TC427/TC428 ELECTRICAL SPECIFICATIONS (CONTINUED)

Electrical Characteristics: Over operating temperature range with 4.5V 

V

DD

18V, unless otherwise noted.

Input

V

IH

Logic 1, High Input Voltage

2.4

V

V

IL

Logic 0, Low Input Voltage

0.8

V

I

IN

Input Current

-10

10

A

0V

V

IN

V

DD

Output

V

OH

High Output Voltage

V

DD

 – 0.025

V

V

OL

Low Output Voltage

0.025

V

R

OH

High Output Resistance

13

20

I

OUT

 = 10 mA, V

DD

 = 18V

R

OL

Low Output Resistance

8

15

I

OUT

 = 10 mA, V

DD

 = 18V

Switching Time (Note 1)

t

R

Rise Time

60

nsec

Figure 3-1, Figure 3-2

t

F

Fall Time

60

nsec

Figure 3-1, Figure 3-2

t

D1

Delay Time

75

nsec

Figure 3-1, Figure 3-2

t

D2

Delay Time

120

nsec

Figure 3-1, Figure 3-2

Power Supply

I

S

Power Supply Current



12

0.6

mA

V

IN

 = 3V (Both Inputs)

V

IN

 = 0V (Both Inputs)

Note

1:

Switching times ensured by design.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21415D-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21415D-page 5

TC426/TC427/TC428

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1:

PIN FUNCTION TABLE

Pin No.

(8-Pin PDIP, 

SOIC, CERDIP)

Symbol

Description

1

NC

No Internal Connection.

2

IN A

Control Input A, TTL/CMOS compatible logic input.

3

GND

Ground.

4

IN B

Control Input B, TTL/CMOS compatible logic input.

5

OUT B

CMOS totem-pole output.

6

V

DD

Supply input, 4.5V to 18V.

7

OUT A

CMOS totem-pole output.

8

NC

No internal Connection.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21415D-html.html
background image

TC426/TC427/TC428

DS21415D-page 6

 2002-2012 Microchip Technology Inc.

3.0

APPLICATIONS INFORMATION

3.1

Supply Bypassing

Charging and discharging large capacitive loads
quickly requires large currents. For example, charging
a 1000 pF load to 18V in 25 nsec requires an 0.72A
current from the device power supply.

To ensure low supply impedance over a wide frequency
range, a parallel capacitor combination is recom-
mended for supply bypassing. Low-inductance ceramic
disk capacitors with short lead lengths (< 0.5 in.) should
be used. A 1 

F film capacitor in parallel with one or two

0.1 

F ceramic disk capacitors normally provides

adequate bypassing.

3.2

Grounding

The TC426 and TC428 contain inverting drivers.
Ground potential drops developed in common ground
impedances from input to output will appear as
negative feedback and degrade switching speed
characteristics.

Individual ground returns for the input and output
circuits or a ground plane should be used.

3.3

Input Stage

The input voltage level changes the no-load or
quiescent supply current. The N-channel MOSFET
input stage transistor drives a 2.5 mA current source
load. With a logic ‘1’ input, the maximum quiescent
supply current is 8 mA. Logic ‘0’ input level signals
reduce quiescent current to 0.4 mA maximum.
Minimum power dissipation occurs for logic ‘0’ inputs
for the TC426/TC427/TC428. Unused driver inputs
must be connected to V

DD

 or GND.

The drivers are designed with 100 mV of hysteresis.
This provides clean transitions and minimizes output
stage current spiking when changing states. Input
voltage thresholds are approximately 1.5V, making the
device TTL compatible over the 4.5V to 18V supply
operating range. Input current is less than 1 

A over

this range.

The TC426/TC427/TC428 may be directly driven by
the TL494, SG1526/1527, SG1524, SE5560, and
similar switch-mode power supply integrated circuits.

3.4

Power Dissipation

The supply current vs frequency and supply current
vs capacitive load characteristic curves will aid in
determining power dissipation calculations.

The TC426/TC427/TC428 CMOS drivers have greatly
reduced quiescent DC power consumption. Maximum
quiescent current is 8 mA compared to the DS0026 40
mA specification. For a 15V supply, power dissipation
is typically 40 mW.

Two other power dissipation components are:

• Output stage AC and DC load power.

• Transition state power.

Output stage power is:

Po = P

DC

 + PAC

= Vo (I

DC

) + f C

L

 V

S

2

 

Where:

Vo = DC output voltage
I

DC

= DC output load current

f

= Switching frequency

Vs = Supply voltage

In power MOSFET drive applications the P

DC

 term is

negligible. MOSFET power transistors are high-imped-
ance, capacitive input devices. In applications where
resistive loads or relays are driven, the P

DC

 component

will normally dominate.

The magnitude of P

AC

 is readily estimated for several

cases:

A.

B.

1. f

= 200 kHZ

1. f

= 200 kHz

2. C

L

=1000 pf

2. C

L

=1000 pf

3. Vs

= 18V

3. Vs

= 15V

4. P

AC

= 65 mW

4. P

AC

= 45 mW 

During output level state changes, a current surge will
flow through the series connected N and P channel
output MOSFETS as one device is turning “ON” while
the other is turning “OFF”. The current spike flows only
during output transitions. The input levels should not be
maintained between the logic ‘0’ and logic ‘1’ levels.
Unused driver inputs must be tied to ground and
not be allowed to float.
 Average power dissipation will
be reduced by minimizing input rise times. As shown in
the characteristic curves, average supply current is
frequency dependent.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21415D-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21415D-page 7

TC426/TC427/TC428

FIGURE 3-1:

Inverting Driver Switching 

Time Test Circuit

FIGURE 3-2:

Noninverting Driver 

Switching Time Test Circuit

FIGURE 3-3:

Voltage Doubler

FIGURE 3-4:

Voltage Inverter

Output

Input

0.1 

μ

F

V

DD

 = 18V

+5V

Input

10%

90%

10%

90%

10%

90%

18V

Output

t

D1

t

F

t

R

t

D2

C

L

 = 1000 pF

μ

F

0V

0V

TC426

(1/2 TC428)

1

2

Input: 100 kHz,

square wave,

t

RISE

 = t

FALL

 ≤ 10 nsec

Output

Input

90%

10%

10%

10%

90%

TC427

(1/2 TC428)

+5V

Input

18V

Output

0V

0V

90%

1

2

0.1 

μ

F

μ

F

t

D1

t

F

t

R

t

D2

V

DD

 = 18V

C

L

 = 1000 pF

Input: 100 kHz,

square wave,

t

RISE

 = t

FALL

 ≤ 10 nsec

+15V

0.1 

μ

4.7 

μ

F

10 

μ

F

47 

μ

F

+

+

+

1N4001

1N4001

V

OUT

f

IN

 = 10 kHz

2

6

3

7

29.

27.

25.

23.

0

10

20 30 40 50 60 70 80 90

I

OUT 

(mA)

28.

26.

24.

22.

30.

100

V

OUT

 (V)

1/2

TC426

+15V

0.1 

μ

F 4.7 

μ

F

10 

μ

F

47 

μ

F

+

+

1N4001

1N4001

2

6

3

7

1/2

TC426

+

-6

-8

-10

-12

0

10 20 30 40 50 60 70 80 90

-7

-9

-11

-13

-5

-14

100

I

OUT 

(mA)

V

OUT

 (V)

V

OUT

f

IN

 = 10 kHz

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21415D-html.html
background image

TC426/TC427/TC428

DS21415D-page 8

 2002-2012 Microchip Technology Inc.

4.0

TYPICAL CHARACTERISTICS

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

30

20

10

0

-25

0

25

150

TIME (ns)

Rise and Fall Times vs.

Temperature

40

50

75

100

125

TEMPERATURE (°C)

35

25

15

80

70

60

50

30

0

DELA

Y

 TIME (ns)

Delay Times vs. Supply Voltage

40

90

SUPPLY VOLTAGE (V)

5

10

15

20

t

D2

60

50

40

30

10

0

5

10

15

20

TIME (ns)

SUPPLY VOLTAGE (V)

70

t

R

t

F

C

L

 = 1000 pF

T

A

 = +25°C

Rise and Fall Times vs.

Supply Voltage

20

C

L

 = 1000 pF

T

A

 = +25°C

C

L

 = 1000 pF

V

DD

 = 18V

t

R

t

F

t

D1

100

1

10

1000

10K

TIME (ns)

CAPACITIVE LOAD (pF)

Rise and Fall Times vs.

Capacitive Load

10

1K

100

90

80

70

60

40

30

0

-25

50

100

150

DELA

Y

 TIME (ns)

TEMPERATURE (°C)

Delay Times vs. Temperature

50

100

25

75

125

70

60

50

40

20

0

10

SUPPL

Y

 CURRENT (mA)

Supply Current vs.

Capacitive Load

30

80

400 kHz

200 kHz

20 kHz

100

1000

10K

CAPACITIVE LOAD (pF)

10

C

L

 = 1000 pF

V

DD

 = 18V

t

D2

t

D1

T

A

 = +25°C

V

DD

 = 18V

T

A

 = +25°C

V

DD

 = 18V

t

R

t

F

0.96

0.72

0.48

0.24

0

10

OUTPUT VOL

T

AGE (V)

Low Output vs. Voltage

1.20

20 30 40 50 60 70 80 90 100

CURRENT SUNK (mA)

10V

15V

1.76

1.32

0.88

0.44

0

10

High Output vs. Voltage

2.20

20 30 40 50 60 70 80 90 100

CURRENT SOURCED (mA)

18V

V

DD

 – V

OUT

   (V)

⎥⎥

13V

20

10

0

1

SUPPL

Y

 CURRENT  (mA)

Supply Current vs. Frequency

30

10

100

1000

FREQUENCY (kHz)

10V

5V

T

A

 = +25°C

V

DD

 = 5V

V

DD

 = 8V

V

DD

 = 18V

C

L

 = 1000 pF

T

A

 = +25°C

T

A

 = +25°C

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21415D-html.html
background image

 2002-2012 Microchip Technology Inc.

DS21415D-page 9

TC426/TC427/TC428

TYPICAL CHARACTERISTICS (CONTINUED)

0

20

15

10

5

0

SUPPL

Y

 VOL

T

AGE (V)

50

100

150

200

250

300

SUPPLY CURRENT (mA)

Supply Voltage vs.

Quiescent Supply Current

No Load
Both Inputs Logic ‘0’
T

A

 = +25°C

1

2

3

4

5

6

20

15

10

5

0

SUPPL

Y

 VOL

T

AGE (V)

SUPPLY CURRENT (mA)

Supply Voltage vs.

Quiescent Supply Current

No Load
Both Inputs Logic ‘1’
T

A

 = +25°C

200

0

400

600

800

1000

1200

1400

1600

0

10

20

30

40

50

60

70

80

90

100

110

120

AMBIENT TEMPERATURE (°C)

MAX. POWER (mW)

8-Pin DIP

8-Pin CERDIP 

8-Pin SOIC 

Thermal Derating Curves

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21415D-html.html
background image

TC426/TC427/TC428

DS21415D-page 10

 2002-2012 Microchip Technology Inc.

5.0

PACKAGING INFORMATION

5.1

Package Marking Information

Package marking data not available at this time.

5.2

Taping Form

Component Taping Orientation for 8-Pin MSOP Devices 

 

Package 

Carrier Width (W) 

Pitch (P) 

Part Per Full Reel 

Reel Size

8-Pin MSOP 

12 mm 

8 mm 

2500 

13 in

Carrier Tape, Number of Components Per Reel and Reel Size

Pin 1

User Direction of Feed

Standard Reel Component Orientation
for 713 Suffix Device

P

Component Taping Orientation for 8-Pin SOIC (Narrow) Devices 

 

Package 

Carrier Width (W) 

Pitch (P) 

Part Per Full Reel 

Reel Size

 8-Pin SOIC (N) 

12 mm 

8 mm 

2500 

13 in

Carrier Tape, Number of Components Per Reel and Reel Size 

Standard Reel Component Orientation
for 713 Suffix Device

Pin 1

User Direction of Feed

P

W

Maker
Microchip Technology Inc.
Datasheet PDF Download