21365C.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21365C-html.html
background image

 2001-2012 Microchip Technology Inc.

DS21365C-page 1

TC120

Features

• Internal Switching Transistor Supports 600mA 

Output Current

• External Switching Transistor Control for Output 

Currents of 2A+

• 300kHz Oscillator Frequency Supports Small 

Inductor Size

• Short Circuit Protection

• Built-In Undervoltage Lockout

• 95% Typical Efficiency

• Automatic Switchover to Current-Saving PFM 

Mode at Low Output Loads

• Automatic Output Capacitor Discharge While in 

Shutdown

• Programmable Soft-Start

• Power-Saving Shutdown Mode

• Small 8-Pin SOP Package

Applications

• Portable Test Equipment

• Local Logic Supplies

• Portable Audio Systems

• Portable Scanners

• Palmtops

• Electronic Organizers

Device Selection Table

Package Type

General Description

TC120 is a 300kHz PFM/PWM step-down (Buck) DC/
DC regulator/controller combination for use in systems
operating from two or more cells, or in line-powered
applications. It uses PWM as the primary modulation
scheme, but automatically converts to PFM at low
output loads for greater efficiency. It requires only an
external inductor, Schottky diode, and two capacitors to
implement a step-down converter having a maximum
output current of 600mA (V

IN

 = 5V, V

OUT

 = 3.3V). An

external switching transistor (P-channel MOSFET) can
be added to increase output current capability to
support output loads of 2A or more.

The TC120 consumes only 55

A (max) of supply

current (V

OUT

 = 3.3V) and can be placed in shutdown

mode by bringing the shutdown input (SHDN) low.
During shutdown, the regulator is disabled, supply
current is reduced to 2.5

A (max), and V

OUT

 is

internally pulled to ground, discharging the output
capacitor. Normal operation resumes when SHDN is
brought high. Other features include a built-in under-
voltage lockout (UVLO), an externally programmable
soft start time, and output short circuit protection. The
TC120 operates from a maximum input voltage of 10V
and is available in a low-profile 8-Pin SOP package.

Functional Block Diagram

Part

Number

Output

Voltage

(V)

Package

Operating

Temp.

Range

TC120503EHA

5.0

8-Pin SOP -40°C to +85°C

TC120333EHA

3.3

8-Pin SOP -40°C to +85°C

TC120303EHA

3.0

8-Pin SOP -40°C to +85°C

1

2

3

4

8

7

6

5

TC120

8-Pin SOP

EXTW

CPC

SHDN/SS

V

IN

GND

EXT

SENSE

L

X

TC120XX03

V

IN

EXTW

CPC

SHDN/SS

L

X

EXT

GND

SENSE

C

IN

D1

L1

V

OUT

V

IN

C

OUT

C

SS

4.7nF

PWM/PFM Step-Down Combination Regulator/Controller

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21365C-html.html
background image

TC120

DS21365C-page 2

 2001-2012 Microchip Technology Inc.

1.0

ELECTRICAL 
CHARACTERISTICS

Absolute Maximum Ratings*

Power Supply Voltage (V

IN

).................... -0.3V to +12V

Voltage on V

OUT 

Pin ............................... -0.3V to +12V

Voltage on LX, Boost Pins

         ................................... (V

IN

 – 12V) to (V

IN 

+ 0.3V)

Voltage on EXT1, EXT2, SHDN Pins
         .......................................... (-0.3V) to (V

IN 

+ 0.3V)

L

Pin Current .............................................. 700mA pk

EXT1, EXT2 Pin Current ...................................±50mA

Continuous Power Dissipation .........................300mW

Operating Temperature Range............. -40°C to +85°C

Storage Temperature Range ..............-40°C to +150°C

*Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to the device. These
are stress ratings only and functional operation of the device
at these or any other conditions above those indicated in the
operation sections of the specifications is not implied.
Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability.

TC120 ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Test circuit of Figure 3-1, T

A

 = 25

C, V

IN

 = V

R

 x 1.2, Note 1 unless otherwise noted.

Symbol

Parameter

Min

Typ

Max

Units

Test Conditions

V

OUT

Output Voltage

V

R

 x 0.975 V

R

 ± 0.5% V

R

 x 1.025

V

V

OUT

 = 3.0V

V

OUT

 = 3.3V

V

OUT

 = 5.0V

I

OUT

 = 120mA (Note 1)

I

OUT

 = 132mA

I

OUT

 = 200mA

V

IN

Input Voltage

1.8

10.0

V

I

OUT

MAX

Maximum Output Current

500
600
600





mA

V

OUT

 = 3.0V

V

OUT

 = 3.3V

V

OUT

 = 5.0V

I

IN

Supply Current

52
55
71

82
86

110

A

V

OUT

 = 3.0V

V

OUT

 = 3.3V

V

OUT

 = 5.0V

V

IN

 = V

R

 x 1.05, no load

I

SHDN

Shutdown Supply Current

1.5

2.5

A

No load, SHDN = 0V, (Note 2)

I

LX

LX Pin Leakage Current


1.5

2

2.5

A

Measured at EXT1 Pin (Note 2)
No load, SHDN = 0V

R

DSON

(

L

X

)

LX Pin ON Resistance



0.69
0.64
0.44

0.94
0.85
0.58

V

OUT

 = 3.0V

V

OUT

 = 3.3V

V

OUT

 = 5.0V

V

OUT

 = V

R

 x 0.9 (Note 2)

V

LX

 = V

IN

 – 0.2V, 10

Resistor from L

to V

IN

,

SHDN = V

IN

R

EXTH

EXT1, EXT2
On Resistance to V

IN



38
35
24

52
47
32

V

OUT

 = 3.0V

V

OUT

 = 3.3V

V

OUT

 = 5.0V

SHDN = V

IH

; EXT1 and EXT2

connected to 200

 load,

V

EXT1

 = V

EXT2

 = (V

IN

 – 0.4V);

V

OUT

 = V

IN

 (Note 2)

R

EXTL

EXT1, EXT2
On Resistance to GND



31
29
20

41
37
26

V

OUT

 = 3.0V

V

OUT

 = 3.3V

V

OUT

 = 5.0V

SHDN = V

IH

; EXT1 and EXT2

pulled up through a series
resistance of 200

to a voltage

such that VEXT1, 2 = 0.4V

f

OSC

Oscillator Frequency

255

300

345

kHz

Measured at EXT1 Pin,
V

IN

 = V

OUT

 + 0.3V,

I

OUT

 = 20mA (Note 3)

D

PWM

Maximum PWM Duty Cycle

100

%

D

PFM

PFM Duty Cycle

15

25

35

%

No load

Efficiency

95

%

V

IN

 > V

R

 x 1.2

Note

1:

V

R

 is the factory-programmed output voltage setting.

2:

No external components connected, except C

SS.

3:

While operating in PWM Mode.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21365C-html.html
background image

 2001-2012 Microchip Technology Inc.

DS21365C-page 3

TC120

Electrical Characteristics: Test circuit of Figure 3-1, T

A

 = 25

C, V

IN

 = V

R

 x 1.2, Note 1 unless otherwise noted.

Symbol

Parameter

Min

Typ

Max

Units

Test Conditions

V

UVLO

Minimum Operating Voltage

0.9

1.8

V

V

OUT

 = V

R

 x 0.9 (Note 2),

SHDN = V

IN

Measured with internal transistor
in OFF state and V

IN

 falling

V

IH

SHDN Input Logic High,
Threshold Voltage

0.65

V

V

OUT

 = 0V, (Note 2)

V

IL

SHDN Input Logic Low,
Threshold Voltage

0.20

V

V

OUT

 = 0V, (Note 2)

t

PRO

Short Circuit Protection
Response Time

3

5

8

msec

Time from V

OUT

 = 0V to

SHDN = V

IL 

(Note 2)

t

SS

Soft Start Time

6

10

16

msec

Note

1:

V

R

 is the factory-programmed output voltage setting.

2:

No external components connected, except C

SS.

3:

While operating in PWM Mode.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21365C-html.html
background image

TC120

DS21365C-page 4

 2001-2012 Microchip Technology Inc.

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1:

PIN FUNCTION TABLE

Pin No.

(8-Pin SOP)

Symbol

Description

1

V

IN

Unregulated supply input.

2

EXTW

Extended external switching transistor drive output. This output follows the timing on the EXT 
output with an additional 100nsec blanking time on both the leading and trailing edges. That is, 
this output transitions from high-to-low 100 nsec prior to the same transition on EXT; and 
transitions low-to-high 100nsec after the same transition on EXT; resulting in a longer external 
switch ON time. (See Section 3.9 External Switching Transistor Selection).

3

CPC

Charge pump capacitor input. An inverting charge pump is formed by attaching a capacitor and 
diode to this input. (See Section 3.5 Improving High Load Efficiency In Regulator Operating 
Mode
).

4

SHDN/SS

Shutdown and soft-start control input. A soft start capacitor of 100pF (min) must be connected to 
this input. The soft start capacitor is charged by an internal 

A current source that gently ramps 

the TC120 into service. Shutdown control is best implemented with an external open collector (or 
open drain) switch. The TC120 enters shutdown when this input is low. During shutdown, the 
regulator is disabled, and supply current is reduced to less than 2.5

A. Normal operation is 

restored when this input is open-circuited, and allowed to float high. (See Section 3.6 Low Power 
Shutdown Mode/Soft Start Input
).

5

SENSE

Voltage sense input. This input must be connected to the output voltage node at the physical 
location that requires the tightest voltage regulation.

6

GND

Ground terminal.

7

EXT

External switching transistor drive output. This output connects directly to the gate of an external 
P-channel MOSFET for applications requiring output currents greater than 600mA. The timing of 
this output exactly matches that of the gate drive for the internal P-channel transistor. This output 
can drive a maximum capacitance of 1000pF. (See Section 3.9 External Switching Transistor 
Selection
).

8

Lx

Inductor terminal. This pin is connected to the drain of the internal P-channel switching transistor. 
If the TC120 is operated as a regulator (i.e., using the internal switch); the inductor must be 
connected between this pin and the SENSE pin.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21365C-html.html
background image

 2001-2012 Microchip Technology Inc.

DS21365C-page 5

TC120

3.0

DETAILED DESCRIPTION

The TC120 can be operated as an integrated step-
down regulator (using the internal switching transistor);
or as a step-down regulator controller (using an
external switching transistor). When operating as an
integrated regulator, the only required external compo-
nents are a Schottky diode, inductor and an output
capacitor. Operating in this configuration, the TC120 is
capable of supporting output load currents to a
maximum of 600mA with operating efficiencies above
85%. Efficiencies at high loads can be further improved
by using the on-board charge pump circuit to pull the
gate of the internal switching transistor below ground
for the lowest possible ON resistance. (For more infor-
mation, see Section 3.5  Improving High Load
Efficiency in Regulator Operating Mode
).

Higher output currents are achieved by operating the
TC120 with an external P-channel switching transistor
(controller mode). In this operating configuration, the
maximum output current is determined primarily by the
ON resistance of the P-channel switch and the series
resistance of the inductor.

FIGURE 3-1:

TEST CIRCUIT

3.1

Inductor Selection

Selecting the proper inductor value is a trade-off
between physical size and power conversion require-
ments. Lower value inductors cost less, but result in
higher ripple current and core losses. They are also
more prone to saturate since the coil current ramps
faster and could overshoot the desired peak value. This
not only reduces efficiency, but could also cause the
current rating of the external components to be
exceeded. Larger inductor values reduce both ripple
current and core losses, but are larger in physical size
and tend to increase the start-up time slightly. A 22

H

inductor is the best overall compromise and is recom-
mended for use with the TC120. For highest efficiency,
use inductors with a low DC resistance (less than
20m

). To minimize radiated noise, consider using a

toroid, pot core or shielded-bobbin inductor. 

3.2

Input Bypass Capacitor

Using an input bypass capacitor reduces peak current
transients drawn from the input supply, and reduces the
switching noise generated by the regulator. The source
impedance of the input supply determines the size of
the capacitor that should be used.

3.3

Output Capacitor

The effective series resistance of the output capacitor
directly affects the amplitude of the output voltage
ripple. (The product of the peak inductor current and
the ESR determines output ripple amplitude.) There-
fore, a capacitor with the lowest possible ESR should
be selected. Smaller capacitors are acceptable for light
loads or in applications where ripple is not a concern. A
47

F Tantalum capacitor is recommended for most

applications. The Sprague 595D series of tantalum
capacitors are amongst the smallest of all low ESR
surface mount capacitors available. Table 3-1 lists
suggested components and suppliers.

3.4

Catch Diode

The high operating frequency of the TC120 requires a
high-speed diode. Schottky diodes such as the MA737
or 1N5817 through 1N5823 (and the equivalent surface
mount versions) are recommended. Select a diode
whose average current rating is greater than the peak
inductor current; and whose voltage rating is higher
than V

IN

MAX

.

3.5

Improving High Load Efficiency in 
Regulator Operating Mode

If the TC120 is operated at high output loads most (or
all) of the time, efficiency can be improved with the
addition of two components. Ordinarily, the voltage
swing on the gate of the internal P-channel transistor is
from ground to V

IN

. By adding a capacitor and diode as

shown in Figure 3-2, an inverting charge pump is
formed, enabling the internal gate voltage to swing
from a negative voltage to +V

IN

. This increased drive

lowers the R

DS

ON

 of the internal transistor, improving

efficiency at high output currents. Care must be taken
to ensure the voltage measured between V

IN

 and CPC

does not exceed an absolute value of 10V. While this is
not a problem at values of V

IN

 at (or below) 5V, higher

V

IN

 values will require the addition of a clamping

mechanism (such as a Zener diode) to limit the voltage
as described. While this technique improves efficiency
at high output loads, it is at the expense of low load
efficiency because energy is expended charging and
discharging the charge pump capacitor. This technique
is therefore not recommended for applications that
operate the TC120 at low output currents for extended
time periods. If unused, CPC must be grounded.

TC120XX03

V

IN

EXTW

CPC

SHDN/SS

L

X

EXT

GND

SENSE

47

μF/10V

Tantalum

C

SS

4.7nF

IN5817

L1

22

μH

V

OUT

V

IN

C

OUT

47

μF/10V

Tantalum

+

+

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21365C-html.html
background image

TC120

DS21365C-page 6

 2001-2012 Microchip Technology Inc.

3.6

Low Power Shutdown Mode/Soft 
Start Input

The SHDN/SS input acts as both the shutdown control
and the node for the external soft start capacitor, which
is charged by an internal 1

A current source. A value

of 4700pF (100pF minimum) is recommended for the
soft start capacitor. Failure to do this may cause large
overshoot voltages and/or large inrush currents result-
ing in possible instability. The TC120 enters a low
power shutdown mode when SHDN/SS is brought low.
While in shutdown, the oscillator is disabled and the
output discharge switch is turned on, discharging the
output capacitor. Figure 3-3 shows the recommended
interface circuits to the SHDN/SS input. As shown, the
SHDN/SS input should be controlled using an open
collector (or open drain) device, such that the SHDN/
SS input is grounded for shutdown mode, and open-
circuited for normal operation (Figure 3-3a). If a CMOS
device is used to control shutdown (Figure 3-3b), the
value of R1 and C

SS

 should be chosen such that the

voltage on SHDN/SS rises from ground to 0.65V in
1.5msec (Figure 3-4). If shutdown is not used, C

SS

must still be connected as shown in Figure 3-3c and
Figure 3-3d. SHDN/SS may be pulled up with a resistor
(Figure 3-3c) as long as the values of R

SS

 and C

SS

provide the approximate charging characteristic on
power up shown in Figure 3-4. C

SS

 only may also be

connected as shown in Figure 3-3d with C

SS

 chosen at

4700pF (minimum 100pF).

3.7

Undervoltage Lockout (UVLO) 

The TC120 is disabled whenever V

IN

 is below the

undervoltage lockout threshold. This threshold is equal
to the guaranteed minimum operating voltage for the
TC120 (i.e., 2.2V). When UVLO is active, the TC120 is
completely disabled.

3.8

Short Circuit Protection

Upon detection of an output short circuit condition, the
TC120 reduces the PWM duty cycle to a minimum
value using its internal protection timer. The sequence
of events is as follows: when an output voltage
decrease to near zero is detected (as the result of an
overload), the internal (5msec) protection timer is
started. If the output voltage has not recovered to
nominal value prior to the expiration of the protection
timer, the TC120 is momentarily shut down by
dedicated, internal circuitry. Immediately following this
action, the soft start sequence is engaged in an attempt
to re-start the TC120. If the output short circuit is
removed, normal operation is automatically restored. If
the short circuit is still present, the timed self-shutdown
sequence described above is repeated.

3.9

External Switching Transistor 
Selection

EXT is a complimentary output with a maximum ON
resistances of 32

 to V

DD

 when high and 26

 to

ground when low, at V

OUT

 = 5V. It is designed to

directly drive a P-channel MOSFET (Figure 3-5). The
P-channel MOSFET selection is determined mainly by
the on-resistance, gate-source threshold and gate
charge requirements. Also, the drain-to-source and
gate-to-source breakdown voltage ratings must be
greater than V

IN

MAX

. The total gate charge specification

should be less than 100nC for best efficiency. The
MOSFET must be capable of handling the required
peak inductor current, and should have a very low on-
resistance at that current. For example, a Si9430
MOSFET has a drain-to-source rating of -20V, and a
typical on-resistance r

DS

ON

 of 0.07

 at 2A, with V

GS

 =

-4.5V. (EXTW (Figure 3-6) may be gated with external
circuitry to add blanking, or as an auxiliary timing
signal.) Table 3-1 lists suggested components and
suppliers.

3.10

Board Layout Guidelines

As with all inductive switching regulators, the TC120
generates fast switching waveforms, which radiate
noise. Interconnecting lead lengths should be
minimized to keep stray capacitance, trace resistance
and radiated noise as low as possible. In addition, the
GND pin, input bypass capacitor and output filter
capacitor ground leads should be connected to a single
point. The input capacitor should be placed as close to
power and ground pins of the TC120 as possible. The
length of the EXT trace must also be kept as short as
possible.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21365C-html.html
background image

 2001-2012 Microchip Technology Inc.

DS21365C-page 7

TC120

TABLE 3-1:

SUGGESTED COMPONENTS AND SUPPLIERS

FIGURE 3-2:

TC120 WITH ADDED COMPONENTS FOR IMPROVED EFFICIENCY AT
HIGH OUTPUT CURRENTS

Type

Inductors

Capacitors

Diodes

Transistors

Surface Mount

Sumida
CD54 Series
CDRH Series

Coilcraft
DO Series

AVX
TPS Series

Sprague
595D Series

ON Semiconductor
MBRS340T3

Nihon
NSQ Series

Matsushita
MA737

Silconix
Little Foot MOSFET Series

Zetex FZT749
PNP Bipolar Transistor

Toshiba 2SA1213 PNP
Transistor

Miniature
Through-Hole

Sumida
RCH Series

Sanyo

OS-CON Series

IRC
OAR Series

Standard
Through-Hole

Coilcraft
PCH Series

Nichicon
PL Series

United Chemi-Conv
LXF Series

ON Semiconductor
TMOS Power MOSFETs

TC120XX03

V

IN

EXTW

CPC

SHDN/SS

L

X

EXT

GND

SENSE

D

1

IN5817

a) For V

IN

 

≤ 5V

C

P

2200 pF

Ceramic

TC120XX03

V

IN

EXTW

CPC

SHDN/SS

L

X

EXT

GND

SENSE

D

1

IN5817

b) For V

IN

 > 5V

C

P

2200 pF

Ceramic

10V

Zener
Diode

V

IN

 

≤ 5V

V

IN

 > 5V

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21365C-html.html
background image

TC120

DS21365C-page 8

 2001-2012 Microchip Technology Inc.

FIGURE 3-3:

SHUTDOWN CONTROL CIRCUITS

FIGURE 3-4:

SOFT START TIMING

SHDN/SS

TC120XX03

C

SS

SHDN/SS

TC120XX03

C

SS

SHDN/SS

TC120XX03

C

SS

4.7nF

SHDN/SS

TC120XX03

R

SS

V

IN

SHDN

ON OFF

47K

2N2222

C

SS

4.7nF

R

1

V

IN

CMOS

Gate

a) Using an Open Collector Device

b) Using a Complementary Output Device

c) Shutdown Not Used – with Pull-Up

d) Shutdown Not Used – No Pull-Up

SHDN

ON OFF

OFF

ON

0.65V

0V

1.5msec

SHDN/SS

Shutdown

Signal

X

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21365C-html.html
background image

 2001-2012 Microchip Technology Inc.

DS21365C-page 9

TC120

FIGURE 3-5:

USING EXTERNAL TRANSISTOR SWITCH

FIGURE 3-6:

EXTERNAL (EXT) AND EXTENDED EXTERNAL (EXTW) SWITCHING 
TRANSISTOR DRIVE OUTPUT

TC120XX03

V

IN

EXTW

CPC

L

X

EXT

GND

SENSE

SHDN/SS

C

SS

4.7 nF

IN5817

L1

22

μH

V

OUT

V

IN

C

IN

47

μF

Tantalum

C

OUT

47

μF

Tantalum

EXT

EXTW

100nsec

100nsec

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21365C-html.html
background image

TC120

DS21365C-page 10

 2001-2012 Microchip Technology Inc.

4.0

PACKAGING INFORMATION

4.1

Package Marking Information

Package marking data not available at this time.

4.2

Taping Form

4.3

Package Dimensions

Component Taping Orientation for 8-Pin SOP Devices

 

Package 

Carrier Width (W) 

Pitch (P) 

Part Per Full Reel 

Reel Size

8-Pin SOP 

12 mm 

8 mm 

1000 

7 in

Carrier Tape, Number of Components Per Reel and Reel Size

PIN 1

User Direction of Feed

Standard Reel Component Orientation
for TR Suffix Device

W

P

8-Pin SOP 

.181 (4.60)
.165 (4.20)

.217 (5.50)
.193 (4.90)

.069 (1.75)

 .055 (1.40) 

   .008 (0.20)
   .000 (0.00)

.020 (0.50)
.012 (0.30)

.256 (6.50)
.232 (5.90)

PIN 1

.010 (0.25)
.004 (0.10)

.018 (0.45)
.014 (0.35)

8

° MAX.

.051 (1.30)
.049 (1.24)

Dimensions: inches (mm)

Note:

For the most current package drawings, please see the Microchip Packaging Specification located
at http://www.microchip.com/packaging

Maker
Microchip Technology Inc.
Datasheet PDF Download