21230E.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21230E-html.html
background image

 1997-2012 Microchip Technology Inc.

DS21230E-page 1

25AA080/25LC080/25C080

Device Selection Table

Features:

• Low-power CMOS technology:

- Write current: 3 mA maximum

- Read current: 500

A typical

- Standby current: 500 nA typical

• 1024 x 8-bit organization

• 16 byte page

• Write cycle time: 5 ms max.

• Self-timed erase and write cycles

• Block write protection:

- Protect none, 1/4, 1/2 or all of array

• Built-in write protection:

- Power-on/off data protection circuitry

- Write enable latch

- Write-protect pin

• Sequential read

• High reliability:

- Endurance: 1 M cycles

- Data retention: > 200 years

- ESD protection: > 4000V

• 8-pin PDIP and SOIC (150 mil)

• Temperature ranges supported:

Description:

The Microchip Technology Inc. 25AA080/25LC080/
25C080 (25XX080

*

) are 8 Kbit Serial Electrically

Erasable PROMs. The memory is accessed via a
simple Serial Peripheral Interface (SPI) compatible
serial bus. The bus signals required are a clock input
(SCK) plus separate data in (SI) and data out (SO)
lines. Access to the device is controlled through a Chip
Select (CS) input. 

Communication to the device can be paused via the
hold pin (HOLD). While the device is paused, transi-
tions on its inputs will be ignored, with the exception of
chip select, allowing the host to service higher priority
interrupts.

Package Types

Block Diagram

Part

Number

V

CC

Range

Max. Clock

Frequency

Temp.

Ranges

25AA080

1.8-5.5V

1 MHz

I

25LC080

2.5-5.5V

2 MHz

I

25C080

4.5-5.5V

3 MHz

I,E

- Industrial (I):

-40

C to +85C

- Automotive (E) (25C080):

-40°C to +125°C

CS

SO

WP

V

SS

V

CC

HOLD

SCK

SI

1

2

3

4

8

7

6

5

2

5

A

A

080

/

PDIP/SOIC

SI

SO

SCK

CS

HOLD

WP

Status

Register

I/O Control

Memory

Control

Logic

X

Dec

HV Generator

EEPROM

Array

Page Latches

Y Decoder

Sense Amp.
R/W Control

Logic

V

CC

V

SS

8K SPI Bus Serial EEPROM

Not recommended for new designs –

Please use 25AA080A/B or 25LC080A/B.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21230E-html.html
background image

25AA080/25LC080/25C080

DS21230E-page 2

 1997-2012 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

(†)

V

CC

.............................................................................................................................................................................7.0V

All inputs and outputs w.r.t. V

SS

........................................................................................................ -0.6V to V

CC

 + 1.0V

Storage temperature .................................................................................................................................-65°C to 150°C

Ambient temperature under bias ...............................................................................................................-40°C to 125°C

Soldering temperature of leads (10 seconds) ....................................................................................................... +300°C

ESD protection on all pins ......................................................................................................................................... 4 KV

1.1

DC Characteristics

† NOTICE: Stresses above those listed under ‘Maximum ratings’ may cause permanent damage to the device. This
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in
the operational listings of this specification is not implied. Exposure to maximum rating conditions for an extended
period of time may affect device reliability.

DC CHARACTERISTICS

Industrial (I):

T

A

 = -40°C to +85°C

 V

CC

 = 1.8V to 5.5V

Automotive (E): T

A

 = -40°C to +125°C  V

CC

 = 4.5V to 5.5V (25C080 only)

Param.

No.

Sym.

Characteristic

Min.

Max.

Units

Test Conditions

D001

V

IH

1

High-level input 
voltage

2.0

V

CC

+1

V

V

CC

2.7V (Note)

D002

V

IH

2

0.7 V

CC

V

CC

+1

V

V

CC

< 2.7V (Note)

D003

V

IL

1

Low-level input
voltage

-0.3

0.8

V

V

CC

2.7V (Note)

D004

V

IL

2

-0.3

0.3  V

CC

V

V

CC

 < 2.7V (Note)

D005

V

OL

Low-level output
voltage

0.4

V

I

OL

 = 2.1 mA

D006

V

OL

0.2

V

I

OL

 = 1.0 mA, V

CC

 < 2.5V

D007

V

OH

High-level output
voltage

V

CC

 -0.5

V

I

OH

 = -400

A

D008

I

LI

Input leakage current

-10

10

A

CS = V

CC

, V

IN

 = V

SS

 

TO

 V

CC

D009

I

LO

Output leakage 
current

-10

10

A

CS = V

CC

, V

OUT

 = V

SS

 

TO

 V

CC

D010

C

INT

Internal Capacitance
(all inputs and 
outputs)

7

pF

T

A

 = 25°C, CLK = 1.0 MHz,

V

CC

 = 5.0V (Note)

D011

I

CC

 Read

Operating Current


1

500

mA

A

V

CC

 = 5.5V; F

CLK

 = 3.0 MHz; 

SO = Open
V

CC

 = 2.5V; F

CLK

 = 2.0 MHz; 

SO = Open

D012

I

CC

 Write


5
3

mA
mA

V

CC

 = 5.5V

V

CC

 = 2.5V

D013

I

CCS

Standby Current


5
1

A
A

CS = V

CC

 = 5.5V, Inputs tied to V

CC

 or 

V

SS

CS = V

CC

 = 2.5V, Inputs tied to V

CC

 or 

V

SS

Note:

This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21230E-html.html
background image

 1997-2012 Microchip Technology Inc.

DS21230E-page 3

25AA080/25LC080/25C080

1.2

AC Characteristics

AC CHARACTERISTICS

Industrial (I):

T

A

 = -40°C to +85°C

V

CC

 = 1.8V to 5.5V

Automotive (E): T

A

 = -40°C to +125°C

V

CC

 = 4.5V to 5.5V (25C080 only)

Param.

No.

Sym.

Characteristic

Min.

Max.

Units

Test Conditions

1

F

CLK

Clock Frequency



3
2
1

MHz
MHz
MHz

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 4.5V

V

CC

 = 1.8V to 2.5V

2

T

CSS

CS Setup Time

100
250
500



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 4.5V

V

CC

 = 1.8V to 2.5V

3

T

CSH

CS Hold Time

150
250
475



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 4.5V

V

CC

 = 1.8V to 2.5V

4

T

CSD

CS Disable Time

500

ns

5

Tsu

Data Setup Time

30
50
50



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 4.5V

V

CC

 = 1.8V to 2.5V

6

T

HD

Data Hold Time

50

100
100



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 4.5V

V

CC

 = 1.8V to 2.5V

7

T

R

CLK Rise Time

2

s

(Note 1)

8

T

F

CLK Fall Time

2

s

(Note 1)

9

T

HI

Clock High Time

150
230
475



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 4.5V

V

CC

 = 1.8V to 2.5V

10

T

LO

Clock Low Time

150
230
475



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 4.5V

V

CC

 = 1.8V to 2.5V

11

T

CLD

Clock Delay Time

50

ns

12

T

CLE

Clock Enable Time

50

ns

13

T

V

Output Valid from Clock Low



150
230
475

ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 4.5V

V

CC

 = 1.8V to 2.5V

14

T

HO

Output Hold Time

0

ns

(Note 1)

15

T

DIS

Output Disable Time



200
250
500

ns
ns
ns

V

CC

 = 4.5V to 5.5V (Note 1)

V

CC

 = 2.5V to 4.5V (Note 1)

V

CC

 = 1.8V to 2.5V (Note 1)

16

T

HS

HOLD Setup Time

100
100
200



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 4.5V

V

CC

 = 1.8V to 2.5V

17

T

HH

HOLD Hold Time

100
100
200



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 4.5V

V

CC

 = 1.8V to 2.5V

18

T

HZ

HOLD Low to Output High-Z

100
150
200



ns
ns
ns

V

CC

 = 4.5V to 5.5V (Note 1)

V

CC

 = 2.5V to 4.5V (Note 1)

V

CC

 = 1.8V to 2.5V (Note 1)

19

T

HV

HOLD High to Output Valid

100
150
200



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 4.5V

V

CC

 = 1.8V to 2.5V

20

T

WC

Internal Write Cycle Time

5

ms

21

Endurance

1M

E/W 

Cycles

(Note 2)

Note 1:

This parameter is periodically sampled and not 100% tested.

2:

This parameter is not tested but ensured by characterization. For endurance estimates in a specific application, please
consult the Total Endurance™ Model which can be obtained from Microchip’s web site at: www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21230E-html.html
background image

25AA080/25LC080/25C080

DS21230E-page 4

 1997-2012 Microchip Technology Inc.

FIGURE 1-1:

HOLD TIMING

FIGURE 1-2:

SERIAL INPUT TIMING

FIGURE 1-3:

SERIAL OUTPUT TIMING

CS

SCK

SO

SI

HOLD

17

16

16

17

19

18

don’t care

5

High-impedance

n+2

n+1

n

n-1

n

n+2

n+1

n

n

n-1

CS

SCK

SI

SO

6

5

8

7

11

3

LSB in

MSB in

High-impedance

12

Mode 1,1

Mode 0,0

2

4

CS

SCK

SO

10

9

13

MSB out

ISB out

3

15

don’t care

SI

Mode 1,1

Mode 0,0

14

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21230E-html.html
background image

 1997-2012 Microchip Technology Inc.

DS21230E-page 5

25AA080/25LC080/25C080

1.3

AC Test Conditions

FIGURE 1-4:

AC TEST CIRCUIT

AC Waveform: 

V

LO

 = 0.2V

V

H I

 = V

CC

 - 0.2V 

(Note 1)

V

H I

 = 4.0V 

(Note 2)

Timing Measurement Reference Level

Input

0.5 V

CC

Output

0.5 V

CC

Note 1: For V

CC

 

 4.0V

2: For V

CC

 > 4.0V

V

CC

SO

100 pF

1.8 K

2.25 K

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21230E-html.html
background image

25AA080/25LC080/25C080

DS21230E-page 6

 1997-2012 Microchip Technology Inc.

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1:

PIN FUNCTION TABLE

2.1

Chip Select (CS)

A low level on this pin selects the device. A high level
deselects the device and forces it into Standby mode.
However, a programming cycle which is already
initiated or in progress will be completed, regardless of
the CS input signal. If CS is brought high during a
program cycle, the device will go into Standby mode as
soon as the programming cycle is complete. When the
device is deselected, SO goes to the high-impedance
state, allowing multiple parts to share the same SPI
bus. A low-to-high transition on CS after a valid write
sequence initiates an internal write cycle. After power-
up, a low level on CS is required prior to any sequence
being initiated.

2.2

Serial Output (SO)

The SO pin is used to transfer data out of the 25XX080.
During a read cycle, data is shifted out on this pin after
the falling edge of the serial clock.

2.3

Write-Protect (WP)

This pin is used in conjunction with the WPEN bit in the
Status register to prohibit writes to the nonvolatile bits
in the Status register. When WP is low and WPEN is
high, writing to the nonvolatile bits in the Status register
is disabled. All other operations function normally.
When WP is high, all functions, including writes to the
nonvolatile bits in the Status register operate normally.
If the WPEN bit is set, WP low during a Status register
write sequence will disable writing to the Status
register. If an internal write cycle has already begun,
WP going low will have no effect on the write.

The WP pin function is blocked when the WPEN bit in
the Status register is low. This allows the user to install
the 25XX080 in a system with WP pin grounded and
still be able to write to the Status register. The WP pin
functions will be enabled when the WPEN bit is set
high.

2.4

Serial Input (SI)

The SI pin is used to transfer data into the device. It
receives instructions, addresses and data. Data is
latched on the rising edge of the serial clock.

2.5

Serial Clock (SCK)

The SCK is used to synchronize the communication
between a master and the 25XX080. Instructions,
addresses or data present on the SI pin are latched on
the rising edge of the clock input, while data on the SO
pin is updated after the falling edge of the clock input.

2.6

Hold (HOLD)

The HOLD pin is used to suspend transmission to the
25XX080 while in the middle of a serial sequence
without having to retransmit the entire sequence again.
It must be held high any time this function is not being
used. Once the device is selected and a serial
sequence is underway, the HOLD pin may be pulled
low to pause further serial communication without
resetting the serial sequence. The HOLD pin must be
brought low while SCK is low, otherwise the HOLD
function will not be invoked until the next SCK high-to-
low transition. The 25XX080 must remain selected
during this sequence. The SI, SCK and SO pins are in
a high-impedance state during the time the device is
paused and transitions on these pins will be ignored. To
resume serial communication, HOLD must be brought
high while the SCK pin is low, otherwise serial commu-
nication will not resume. Lowering the HOLD line at any
time will tri-state the SO line.

Name

PDIP

SOIC

Function

CS

1

1

Chip Select Input

SO

2

2

Serial Data Output

WP

3

3

Write-Protect Pin

Vss

4

4

Ground

SI

5

5

Serial Data Input

SCK

6

6

Serial Clock Input

HOLD

7

7

Hold Input

Vcc

8

8

Supply Voltage

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21230E-html.html
background image

 1997-2012 Microchip Technology Inc.

DS21230E-page 7

25AA080/25LC080/25C080

3.0

FUNCTIONAL DESCRIPTION

3.1

Principles of Operation

The 25XX080 are 1024 byte Serial EEPROMs
designed to interface directly with the Serial Peripheral
Interface (SPI) port of many of today’s popular micro-
controller families, including Microchip’s PIC16C6X/7X
microcontrollers. It may also interface with microcon-
trollers that do not have a built-in SPI port by using
discrete I/O lines programmed properly with the
software. 

The 25XX080 contains an 8-bit instruction register. The
device is accessed via the SI pin, with data being
clocked in on the rising edge of SCK. The CS pin must
be low and the HOLD pin must be high for the entire
operation. The WP pin must be held high to allow
writing to the memory array.

Table 3-1 contains a list of the possible instruction
bytes and format for device operation. All instructions,
addresses, and data are transferred MSB first, LSB
last.

Data is sampled on the first rising edge of SCK after CS
goes low. If the clock line is shared with other periph-
eral devices on the SPI bus, the user can assert the
HOLD input and place the 25XX080 in ‘HOLD’ mode.
After releasing the HOLD pin, operation will resume
from the point when the HOLD was asserted.

3.2

Read Sequence

The device is selected by pulling CS low. The 8-bit READ
instruction is transmitted to the 25XX080 followed by
the 16-bit address, with the six MSBs of the address
being "don’t care" bits. After the correct READ instruction
and address are sent, the data stored in the memory at
the selected address is shifted out on the SO pin. The
data stored in the memory at the next address can be
read sequentially by continuing to provide clock pulses.
The internal address pointer is automatically incre-
mented to the next higher address after each byte of
data is shifted out. When the highest address is reached
(03FFh), the address counter rolls over to address
0000h allowing the read cycle to be continued indefi-
nitely. The read operation is terminated by raising the
CS pin (Figure 3-1).

3.3

Write Sequence

Prior to any attempt to write data to the 25XX080, the
write enable latch must be set by issuing the WREN
instruction (Figure 3-4). This is done by setting CS low
and then clocking out the proper instruction into the
25XX080. After all eight bits of the instruction are trans-
mitted, the CS must be brought high to set the write
enable latch. If the write operation is initiated immedi-
ately after the WREN instruction without CS being
brought high, the data will not be written to the array
because the write enable latch will not have been
properly set.

Once the write enable latch is set, the user may
proceed by setting the CS low, issuing a WRITE instruc-
tion, followed by the 16-bit address, with the six MSBs
of the address being “don’t care” bits, and then the data
to be written. Up to 16 bytes of data can be sent to the
25XX080 before a write cycle is necessary. The only
restriction is that all of the bytes must reside in the
same page. A page address begins with 

xxxx

 

xxxx

xxxx

 

0000

 and ends with 

xxxx

 

xxxx

 

xxxx

 

1111

.

If the internal address counter reaches 

xxxx

 

xxxx

xxxx

 

1111

 and the clock continues, the counter will

roll back to the first address of the page and overwrite
any data in the page that may have been written.

For the data to be actually written to the array, the CS
must be brought high after the Least Significant bit (D0)
of the n

th

 data byte has been clocked in. If CS is

brought high at any other time, the write operation will
not be completed. Refer to Figure 3-2 and Figure 3-3
for more detailed illustrations on the byte write
sequence and the page write sequence respectively.
While the write is in progress, the Status register may
be read to check the status of the WPEN, WIP, WEL,
BP1 and BP0 bits (Figure 3-6). A read attempt of a
memory array location will not be possible during a
write cycle. When the write cycle is completed, the
write enable latch is reset.

TABLE 3-1:

INSTRUCTION SET

Instruction Name

Instruction Format

Description

READ

0000 0011

Read data from memory array beginning at selected address

WRITE

0000 0010

Write data to memory array beginning at selected address

WRDI

0000 0100

Reset the write enable latch (disable write operations)

WREN

0000 0110

Set the write enable latch (enable write operations)

RDSR

0000 0101

Read Status register

WRSR

0000 0001

Write Status register 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21230E-html.html
background image

25AA080/25LC080/25C080

DS21230E-page 8

 1997-2012 Microchip Technology Inc.

FIGURE 3-1:

READ SEQUENCE

FIGURE 3-2:

BYTE WRITE SEQUENCE

FIGURE 3-3:

PAGE WRITE SEQUENCE

SO

SI

SCK

CS

0

2

3

4

5

6

7

8

9 10 11

21 22 23 24 25 26 27 28 29 30 31

1

0

1

0

0

0

0

0

1

15 14 13 12

2

1

0

7

6

5

4

3

2

1

0

instruction

16-bit address

data out

High-impedance

SO

SI

CS

9 10 11

21 22 23 24 25 26 27 28 29 30 31

0

0

0

0

0

0

0

1

15 14 13 12

2

1

0

7

6

5

4

3

2

1

0

instruction

16-bit address

data byte

High-impedance

SCK

0

2

3

4

5

6

7

1

8

Twc

SI

CS

9 10 11

21 22 23 24 25 26 27 28 29 30 31

0

0

0

0

0

0

0

1

15 14 13 12

2

1

0

7

6

5

4

3

2

1

0

instruction

16-bit address

data byte 1

SCK

0

2

3

4

5

6

7

1

8

SI

CS

41 42 43

46 47

7

6

5

4

3

2

1

0

data byte n (16 max)

SCK

32

34 35 36 37 38 39

33

40

7

6

5

4

3

2

1

0

data byte 3

7

6

5

4

3

2

1

0

data byte 2

44 45

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21230E-html.html
background image

 1997-2012 Microchip Technology Inc.

DS21230E-page 9

25AA080/25LC080/25C080

3.4

Write Enable (WREN) and Write 
Disable (WRDI)

The 25XX080 contains a write enable latch.   See
Table 3-3 for the Write-Protect Functionality Matrix.
This latch must be set before any write operation will be
completed internally. The WREN instruction will set the
latch, and the WRDI will reset the latch. 

The following is a list of conditions under which the
write enable latch will be reset:

• Power-up

• WRDI instruction successfully executed

• WRSR instruction successfully executed

• WRITE instruction successfully executed

FIGURE 3-4:

WRITE ENABLE SEQUENCE

FIGURE 3-5:

WRITE DISABLE SEQUENCE

SCK

0

2

3

4

5

6

7

1

SI

High-impedance

SO

CS

0

1

0

0

0

0

0

1

SCK

0

2

3

4

5

6

7

1

SI

High-impedance

SO

CS

0

1

0

0

0

0

0

10

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21230E-html.html
background image

25AA080/25LC080/25C080

DS21230E-page 10

 1997-2012 Microchip Technology Inc.

3.5

Read Status Register (RDSR)

The Read Status Register (RDSR) instruction provides
access to the Status register. The Status register may
be read at any time, even during a write cycle. The
Status register is formatted as follows:

The Write-In-Process (WIP) bit indicates whether the
25XX080 is busy with a write operation. When set to a

1

’, a write is in progress, when set to a ‘

0

’, no write is

in progress. This bit is read-only.

The Write Enable Latch (WEL) bit indicates the status
of the write enable latch. When set to a ‘

1

’, the latch

allows writes to the array, when set to a ‘

0

’, the latch

prohibits writes to the array. The state of this bit can
always be updated via the WREN or WRDI commands
regardless of the state of write protection on the Status
register. This bit is read only.

The  Block Protection (BP0 and BP1) bits indicate
which blocks are currently write-protected. These bits
are set by the user issuing the WRSR instruction. These
bits are nonvolatile.

See Figure 3-6 for the RDSR timing sequence.

FIGURE 3-6:

READ STATUS REGISTER TIMING SEQUENCE

7

6

5

4

3

2

1

0

WPEN

X

X

X

BP1

BP0

WEL

WIP

SO

SI

CS

9

10

11

12

13

14

15

1

1

0

0

0

0

0

0

7

6

5

4

2

1

0

instruction

data from Status register

High-impedance

SCK

0

2

3

4

5

6

7

1

8

3

Maker
Microchip Technology Inc.
Datasheet PDF Download