21223H.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21223H-html.html
background image

© 2008 Microchip Technology Inc.

DS21223H-page 1

25AA640/25LC640

Device Selection Table

Features:

• Low-Power CMOS Technology

- Write current: 3 mA, typical

- Read current: 500

μ

A, typical

- Standby current: 500 nA, typical

• 8192 x 8 Bit Organization

• 32 Byte Page

• Write Cycle Time: 5 ms max.

• Self-Timed Erase and Write Cycles

• Block Write Protection

- Protect none, 1/4, 1/2 or all of array

• Built-in Write Protection

- Power on/off data protection circuitry

- Write enable latch

- Write-protect pin

• Sequential Read

• High Reliability

- Data retention: > 200 years

- ESD protection: > 4000V

• 8-pin PDIP, SOIC and TSSOP Packages

• Temperature Ranges Supported:

- Industrial (I): -40

°C to +85°C

- Automotive (E): -40

°C to +125°C

Description:

The Microchip Technology Inc. 25AA640/25LC640
(25XX640

*

) is a 64 Kbit Serial Electrically Erasable

PROM [EEPROM]. The memory is accessed via a
simple Serial Peripheral Interface (SPI) compatible
serial bus. The bus signals required are a clock input
(SCK) plus separate data in (SI) and data out (SO)
lines. Access to the device is controlled through a Chip
Select (CS) input. 

Communication to the device can be paused via the
hold pin (HOLD). While the device is paused,
transitions on its inputs will be ignored, with the
exception of Chip Select, allowing the host to service
higher priority interrupts. 

Block Diagram

Package Types

Part

Number

V

CC

Range

Max Clock

Frequency

Temp

Ranges

25AA640

1.8-5.5V

1 MHz

I

25LC640

2.5-5.5V

2 MHz

I

25LC640

4.5-5.5V

3/2.5 MHz

I, E

SI

SO

SCK

CS

HOLD

WP

I/O Control

Memory

Control

Logic

HV Generator

EEPROM

Array

Page 

Y Decoder

Sense Amp.
R/W Control

Logic

V

CC

V

SS

Latches

XDEC

STATUS

Register

25XX6

40

25

X

X

6

40

PDIP/SOIC

TSSOP

CS

SO

WP

V

SS

V

CC

HOLD

SCK

SI

8

7

6

5

1

2

3

4

8
7
6
5

1
2
3
4

HOLD

V

CC

CS

SO

SCK
SI
V

SS

WP

64K SPI Bus Serial EEPROM

*25XX640 is used in this document as a generic part number for the 25AA640/25LC640 devices.

Not recommended for new designs –

Please use 25AA640A or 25LC640A.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21223H-html.html
background image

25AA640/25LC640

DS21223H-page 2

© 2008 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

(†)

V

CC

.............................................................................................................................................................................7.0V

All inputs and outputs w.r.t. V

SS

........................................................................................................ -0.6V to V

CC

 + 1.0V

Storage temperature .................................................................................................................................-65°C to 150°C

Ambient temperature under bias ...............................................................................................................-65°C to 125°C

ESD protection on all pins .......................................................................................................................................... 4 kV

TABLE 1-1:

DC CHARACTERISTICS

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for an
extended period of time may affect device reliability.

DC CHARACTERISTICS

Industrial (I):

T

A

 = -40°C to +85°C

 V

CC

 = 1.8V to 5.5V

Automotive (E): T

A

 = -40°C to +125°C  V

CC

 = 4.5V to 5.5V

Param.

No.

Sym

Characteristics

Min

Max

Units

Conditions

D1

V

IH

1

High-level input 
voltage

2.0

V

CC

 + 1

V

V

CC

 ≥ 2.7V (Note 1)

D2

V

IH

2

0.7 V

CC

V

CC

 + 1

V

V

CC

 < 2.7V (Note 1)

D3

V

IL

1

Low-level input 
voltage

-0.3

0.8

V

V

CC

 ≥ 2.7V (Note 1)

D4

V

IL

2

-0.3

0.2 V

CC

V

V

CC

 < 2.7V (Note 1)

D5

V

OL

Low-level output 
voltage

0.4

V

I

OL

 = 2.1 mA

0.2

V

I

OL

 = 1.0 mA, V

CC

 = < 2.5V

D6

V

OH

High-level output 
voltage

V

CC

 - 0.5

V

I

OH

 = -400

μA

D7

I

LI

Input leakage current

±1

μA

CS = V

CC

, V

IN

 = V

SS

 

TO

 V

CC

D8

I

LO

Output leakage 
current

±1

μA

CS = V

CC

, V

OUT

 = V

SS

 

TO

 V

CC

D9

C

INT

Internal Capacitance
(all inputs and 
outputs)

7

pF

T

A

 = 25°C, CLK = 1.0 MHz,

V

CC

 = 5.0V (Note 1)

D10

I

CC

 Read Operating Current


1

500

mA

μA

V

CC

 = 5.5V; F

CLK

 = 3.0 MHz; 

SO = Open
V

CC

 = 2.5V; F

CLK

 = 2.0 MHz; 

SO = Open

D11

I

CC

 Write


5
3

mA
mA

V

CC

 = 5.5V

V

CC

 = 2.5V

D12

I

CCS

Standby Current


5
1

μA

μA

CS = V

CC

 = 5.5V, Inputs tied to V

CC

 or 

V

SS

CS = V

CC

 = 2.5V, Inputs tied to V

CC

 or 

V

SS

Note 1:

This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21223H-html.html
background image

© 2008 Microchip Technology Inc.

DS21223H-page 3

25AA640/25LC640

TABLE 1-2:

AC CHARACTERISTICS

AC CHARACTERISTICS

Industrial (I):

T

A

 = -40°C to +85°C

V

CC

 = 1.8V to 5.5V

Automotive (E): T

A

 = -40°C to +125°C

V

CC

 = 4.5V to 5.5V

Param.

No.

Sym

Characteristic

Min

Max

Units

Conditions

1

F

CLK

Clock Frequency



3
2
1

MHz
MHz
MHz

V

CC

 = 4.5V to 5.5V (Note 2)

V

CC

 = 2.5V to 5.5V

V

CC

 = 1.8V to 5.5V

2

T

CSS

CS Setup Time

100
250
500



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 5.5V

V

CC

 = 1.8V to 5.5V

3

T

CSH

CS Hold Time

150
250
475



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 5.5V

V

CC

 = 1.8V to 5.5V

4

T

CSD

CS Disable Time

500

ns

5

T

SU

Data Setup Time

30
50
50



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 5.5V

V

CC

 = 1.8V to 5.5V

6

T

HD

Data Hold Time

50

100
100



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 5.5V

V

CC

 = 1.8V to 5.5V

7

T

R

CLK Rise Time

2

μs

(Note 1)

8

T

F

CLK Fall Time

2

μs

(Note 1)

9

T

HI

Clock High Time

150
230
475



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 5.5V

V

CC

 = 1.8V to 5.5V

10

T

LO

Clock Low Time

150
230
475



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 5.5V

V

CC

 = 1.8V to 5.5V

11

T

CLD

Clock Delay Time

50

ns

12

T

CLE

Clock Enable Time

50

ns

13

T

V

Output Valid from    
Clock Low



150
230
475

ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 5.5V

V

CC

 = 1.8V to 5.5V

14

T

HO

Output Hold Time

0

ns

(Note 1)

15

T

DIS

Output Disable Time



200
250
500

ns
ns
ns

V

CC

 = 4.5V to 5.5V (Note 1)

V

CC

 = 2.5V to 5.5V (Note 1)

V

CC

 = 1.8V to 5.5V (Note 1)

16

T

HS

HOLD Setup Time

100
100
200



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 5.5V

V

CC

 = 1.8V to 5.5V

17

T

HH

HOLD Hold Time

100
100
200



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 5.5V

V

CC

 = 1.8V to 5.5V

18

T

HZ

HOLD Low to Output 
High-Z

100
150
200



ns
ns
ns

V

CC

 = 4.5V to 5.5V (Note 1)

V

CC

 = 2.5V to 5.5V (Note 1)

V

CC

 = 1.8V to 5.5V (Note 1)

19

T

HV

HOLD High to Output 
Valid

100
150
200



ns
ns
ns

V

CC

 = 4.5V to 5.5V

V

CC

 = 2.5V to 5.5V

V

CC

 = 1.8V to 5.5V

20

T

WC

Internal Write Cycle 
Time

5

ms

21

Endurance

1M

E/W 

Cycles

(Note 3)

Note

1: This parameter is periodically sampled and not 100% tested.
2: F

CLK

 max. = 2.5 MHz for T

A

 > 85°C.

3: This parameter is not tested but established by characterization. For endurance estimates in a specific application,

please consult the Total Endurance™ Model which can be obtained from Microchip’s web site at: www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21223H-html.html
background image

25AA640/25LC640

DS21223H-page 4

© 2008 Microchip Technology Inc.

FIGURE 1-1:

HOLD TIMING

FIGURE 1-2:

SERIAL INPUT TIMING

FIGURE 1-3:

SERIAL OUTPUT TIMING

CS

SCK

SO

SI

HOLD

17

16

16

17

19

18

Don’t Care

5

High-Impedance

n + 2

n + 1

n

n - 1

n

n + 2

n + 1

n

n

n - 1

CS

SCK

SI

SO

6

5

8

7

11

3

LSB In

MSB In

High-Impedance

12

Mode 1,1

Mode 0,0

4

2

CS

SCK

SO

10

9

13

MSB Out

LSB Out

3

15

Don’t Care

SI

Mode 1,1

Mode 0,0

14

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21223H-html.html
background image

© 2008 Microchip Technology Inc.

DS21223H-page 5

25AA640/25LC640

TABLE 1-3:

AC TEST CONDITIONS

FIGURE 1-4:

AC TEST CIRCUIT

AC Waveform: 

V

LO

 = 0.2V

V

H I

 = V

CC

 – 0.2V 

(Note 1)

V

H I

 = 4.0V 

(Note 2)

Timing Measurement Reference Level

Input

0.5 V

CC

Output

0.5 V

CC

Note 1: For V

CC

 

≤ 4.0V

2: For V

CC

 > 4.0V

V

CC

SO

100 pF

1.8 k

Ω

2.25 k

Ω

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21223H-html.html
background image

25AA640/25LC640

DS21223H-page 6

© 2008 Microchip Technology Inc.

2.0

PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1:

PIN FUNCTION TABLE

2.1

Chip Select (CS)

A low level on this pin selects the device. A high level
deselects the device and forces it into Standby mode.
However, a programming cycle which is already
initiated or in progress will be completed, regardless of
the CS input signal. If CS is brought high, or remains
high during a program cycle, the device will go into
Standby mode when the programming cycle is
complete. When the device is deselected, SO goes to
the high-impedance state, allowing multiple parts to
share the same SPI bus. A low-to-high transition on CS
after a valid write sequence initiates an internal write
cycle. After power-up, a high-to-low transition on CS is
required prior to any sequence being initiated.

2.2

Serial Output (SO)

The SO pin is used to transfer data out of the 25XX640.
During a read cycle, data is shifted out on this pin after
the falling edge of the serial clock.

2.3

Write-Protect (WP)

This pin is used in conjunction with the WPEN bit in the
STATUS register to prohibit writes to the nonvolatile
bits in the STATUS register. When WP is low and
WPEN is high, writing to the nonvolatile bits in the STA-
TUS register is disabled. All other operations function
normally. When WP is high, all functions, including
writes to the nonvolatile bits in the STATUS register
operate normally. If the WPEN bit is set, WP low during
a STATUS register write sequence will disable writing
to the STATUS register. If an internal write cycle has
already begun, WP going low will have no effect on the
write.

The WP pin function is blocked when the WPEN bit in
the STATUS register is low. This allows the user to
install the 25XX640 in a system with WP pin grounded
and still be able to write to the STATUS register. The
WP pin functions will be enabled when the WPEN bit is
set high.

2.4

Serial Input (SI)

The SI pin is used to transfer data into the device. It
receives instructions, addresses, and data. Data is
latched on the rising edge of the serial clock.

2.5

Serial Clock (SCK)

The SCK is used to synchronize the communication
between a master and the 25XX640. Instructions,
addresses, or data present on the SI pin are latched on
the rising edge of the clock input, while data on the SO
pin is updated after the falling edge of the clock input.

2.6

Hold (HOLD)

The HOLD pin is used to suspend transmission to the
25XX640 while in the middle of a serial sequence with-
out having to retransmit the entire sequence over
again. It must be held high any time this function is not
being used. Once the device is selected and a serial
sequence is underway, the HOLD pin may be pulled
low to pause further serial communication without
resetting the serial sequence. The HOLD pin must be
brought low while SCK is low, otherwise the HOLD
function will not be invoked until the next SCK high-to-
low transition. The 25XX640 must remain selected
during this sequence. The SI, SCK, and SO pins are in
a high-impedance state during the time the device is
paused and transitions on these pins will be ignored. To
resume serial communication, HOLD must be brought
high while the SCK pin is low, otherwise serial
communication will not resume. Lowering the HOLD
line at any time will tri-state the SO line.

Name

PDIP

SOIC

TSSOP

Description

CS

1

1

3

Chip Select Input

SO

2

2

4

Serial Data Output

WP

3

3

5

Write-Protect Pin

V

SS

4

4

6

Ground

SI

5

5

7

Serial Data Input

SCK

6

6

8

Serial Clock Input

HOLD

7

7

1

Hold Input

V

CC

8

8

2

Supply Voltage

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21223H-html.html
background image

© 2008 Microchip Technology Inc.

DS21223H-page 7

25AA640/25LC640

3.0

FUNCTIONAL DESCRIPTION

3.1

Principles Of Operation

The 25XX640 is a 8192 byte Serial EEPROM designed
to interface directly with the Serial Peripheral Interface
(SPI) port of many of today’s popular microcontroller
families, including Microchip’s PIC16C6X/7X micro-
controllers. It may also interface with microcontrollers
that do not have a built-in SPI port by using discrete
I/O lines programmed properly with the software. 

The 25XX640 contains an 8-bit instruction register. The
device is accessed via the SI pin, with data being
clocked in on the rising edge of SCK. The CS pin must
be low and the HOLD pin must be high for the entire
operation. 

Table 3-1 contains a list of the possible instruction
bytes and format for device operation. All instructions,
addresses, and data are transferred MSB first, LSB
last.

Data is sampled on the first rising edge of SCK after CS
goes low. If the clock line is shared with other
peripheral devices on the SPI bus, the user can assert
the HOLD input and place the 25XX640 in ‘HOLD’
mode. After releasing the HOLD pin, operation will
resume from the point when the HOLD was asserted.

3.2

Read Sequence

The device is selected by pulling CS low. The 8-bit
READ

 instruction is transmitted to the 25XX640 fol-

lowed by the 16-bit address with the three MSBs of the
address being “don’t care” bits. After the correct READ
instruction and address are sent, the data stored in the
memory at the selected address is shifted out on the
SO pin. The data stored in the memory at the next
address can be read sequentially by continuing to pro-
vide clock pulses. The internal Address Pointer is auto-
matically incremented to the next higher address after
each byte of data is shifted out. When the highest
address is reached (1FFFh), the address counter rolls
over to address 0000h allowing the read cycle to be
continued indefinitely. The read operation is terminated
by raising the CS pin (Figure 3-1).

3.3

Write Sequence

Prior to any attempt to write data to the 25XX640 array
or STATUS register, the write enable latch must be set
by issuing the WREN instruction (Figure 3-4). This is
done by setting CS low and then clocking out the
proper instruction into the 25XX640. After all eight bits
of the instruction are transmitted, the CS must be
brought high to set the write enable latch. If the write
operation is initiated immediately after the WREN
instruction without CS being brought high, the data will
not be written to the array because the write enable
latch will not have been properly set.

Once the write enable latch is set, the user may
proceed by setting the CS low, issuing a WRITE
instruction, followed by the address, and then the data
to be written. Up to 32 bytes of data can be sent to the
25XX640 before a write cycle is necessary. The only
restriction is that all of the bytes must reside in the
same page. A page address begins with XXX0 0000
and ends with XXX1 1111. If the internal address
counter reaches XXX1 1111 and the clock continues,
the counter will roll back to the first address of the page
and overwrite any data in the page that may have been
written.

For the data to be actually written to the array, the CS
must be brought high after the Least Significant bit (D0)
of the n

th

 data byte has been clocked in. If CS is

brought high at any other time, the write operation will
not be completed. Refer to Figure 3-2 and Figure 3-3
for more detailed illustrations on the byte write
sequence and the page write sequence, respectively.
While the write is in progress, the STATUS register may
be read to check the status of the WPEN, WIP, WEL,
BP1, and BP0 bits (Figure 3-6). A read attempt of a
memory array location will not be possible during a
write cycle. When the write cycle is completed, the
write enable latch is reset.

TABLE 3-1:

INSTRUCTION SET

Instruction Name

Instruction Format

Description

READ

0000 0011

Read data from memory array beginning at selected address

WRITE

0000 0010

Write data to memory array beginning at selected address

WREN

0000 0110

Set the write enable latch (enable write operations)

WRDI

0000 0100

Reset the write enable latch (disable write operations)

RDSR

0000 0101

Read STATUS register

WRSR

0000 0001

Write STATUS register 

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21223H-html.html
background image

25AA640/25LC640

DS21223H-page 8

© 2008 Microchip Technology Inc.

FIGURE 3-1:

READ SEQUENCE

FIGURE 3-2:

BYTE WRITE SEQUENCE

FIGURE 3-3:

PAGE WRITE SEQUENCE

SO

SI

SCK

CS

0

2

3

4

5

6

7

8

9 10 11

21 22 23 24 25 26 27 28 29 30 31

1

0

1

0

0

0

0

0

1

15 14 13 12

2

1

0

7

6

5

4

3

2

1

0

Instruction

16-bit Address

Data Out

High-Impedance

SO

SI

CS

0

0

0

0

0

0

0

1

15 14 13 12

2

1

0

7

6

5

4

3

2

1

0

Instruction

16-bit Address

Data Byte

High-Impedance

Twc

SI

CS

9 10 11

21 22 23 24 25 26 27 28 29 30 31

0

0

0

0

0

0

0

1

15 14 13 12

2

1

0

7

6

5

4

3

2

1

0

Instruction

16-bit Address

Data Byte 1

SCK

0

2

3

4

5

6

7

1

8

SI

CS

41 42 43

46 47

7

6

5

4

3

2

1

0

Data Byte n (32 max)

SCK

32

34 35 36 37 38 39

33

40

7

6

5

4

3

2

1

0

Data Byte 3

7

6

5

4

3

2

1

0

Data Byte 2

44 45

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21223H-html.html
background image

© 2008 Microchip Technology Inc.

DS21223H-page 9

25AA640/25LC640

3.4

Write Enable (WREN) and
Write Disable (WRDI)

The 25XX640 contains a write enable latch. See
Table 3-3 for the Write-Protect Functionality Matrix.
This latch must be set before any write operation will be
completed internally. The WREN instruction will set the
latch, and the WRDI will reset the latch. 

The following is a list of conditions under which the
write enable latch will be reset:

• Power-up

• WRDI instruction successfully executed

• WRSR instruction successfully executed

• WRITE instruction successfully executed

FIGURE 3-4:

WRITE ENABLE SEQUENCE

FIGURE 3-5:

WRITE DISABLE SEQUENCE

SCK

0

2

3

4

5

6

7

1

SI

High-Impedance

SO

CS

0

1

0

0

0

0

0

1

SCK

0

2

3

4

5

6

7

1

SI

High-Impedance

SO

CS

0

1

0

0

0

0

0

10

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21223H-html.html
background image

25AA640/25LC640

DS21223H-page 10

© 2008 Microchip Technology Inc.

3.5

Read Status Register Instruction 
(RDSR)

The Read Status Register instruction (RDSR) provides
access to the STATUS register. The STATUS register
may be read at any time, even during a write cycle. The
STATUS register is formatted as follows:

The Write-In-Process (WIP) bit indicates whether the
25XX640 is busy with a write operation. When set to a
‘1’, a write is in progress, when set to a ‘0’, no write is
in progress. This bit is read-only.

The Write Enable Latch (WEL) bit indicates the status
of the write enable latch. When set to a ‘1’, the latch
allows writes to the array and STATUS register, when
set to a ‘0’, the latch prohibits writes to the array and
STATUS register. The state of this bit can always be
updated via the WREN or WRDI commands regardless
of the state of write protection on the STATUS register.
This bit is read-only.

The  Block Protection (BP0 and BP1) bits indicate
which blocks are currently write-protected. These bits
are set by the user issuing the WRSR instruction. These
bits are nonvolatile.

See Figure 3-6 for RDSR timing sequence.

FIGURE 3-6:

READ STATUS REGISTER TIMING SEQUENCE

7

6

5

4

3

2

1

0

WPEN

X

X

X

BP1

BP0

WEL

WIP

SO

SI

CS

9

10

11

12

13

14

15

1

1

0

0

0

0

0

0

7

6

5

4

2

1

0

Instruction

Data from STATUS Register

High-Impedance

SCK

0

2

3

4

5

6

7

1

8

3

Maker
Microchip Technology Inc.
Datasheet PDF Download