21160G.book

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 1

24LC21A

Features:

• Single Supply with Operation Down to 2.5V

• Completely Implements DDC1™/DDC2™ 

Interface for Monitor Identification, Including 
Recovery to DDC1

• Pin and Function Compatible with 24LC21

• Low-Power CMOS Technology

- 1 mA typical active current 

- 10 

μA standby current typical at 5.5V

• 2-Wire Serial Interface Bus, I

2

C™ Compatible 

• 100 kHz (2.5V) and 400 kHz (5V) Compatibility

• Self-Timed Write Cycle (including auto-erase)

• Page Write Buffer for up to Eight Bytes

•  1,000,000 Erase/Write Cycles Ensured

• Data Retention > 200 years

• ESD Protection > 4000V

• 8-pin PDIP and SOIC Package

• Available for Extended Temperature Ranges

• Pb-Free and RoHS Compliant

Description:

The Microchip Technology Inc. 24LC21A is a 128 x 8-bit
dual-mode Electrically Erasable PROM. This device is
designed for use in applications requiring storage and
serial transmission of configuration and control informa-
tion. Two modes of operation have been implemented:
Transmit-Only mode and Bidirectional mode. Upon
power-up, the device will be in the Transmit-Only mode,
sending a serial bit stream of the memory array from 00h
to 7Fh, clocked by the VCLK pin. A valid high-to-low
transition on the SCL pin will cause the device to enter
the transition mode, and look for a valid control byte on
the I

2

C bus. If it detects a valid control byte from the

master, it will switch into Bidirectional mode, with byte
selectable read/write capability of the memory array
using SCL. If no control byte is received, the device will
revert to the Transmit-Only mode after it receives 128
consecutive VCLK pulses while the SCL pin is idle. The
24LC21A is available in a standard 8-pin PDIP and
SOIC package in industrial temperature range.

Package Types

Block Diagram

Pin Function Table

- Industrial (I):

-40°C to

+85°C

Name

Function

V

SS

Ground

SDA

Serial Address/Data I/O

SCL

Serial Clock (Bidirectional mode)

VCLK

Serial Clock (Transmit-Only mode)

V

CC

+2.5V to 5.5V Power Supply

NC

No Connection

PDIP

SOIC

24

LC

21

A

NC

NC

NC

V

SS

1

2

3

4

8

7

6

5

Vcc

VCLK

SCL

SDA

24L

C

21A

NC

NC

NC

Vss

1

2

3

4

8

7

6

5

Vcc

VCLK

SCL

SDA

I/O

Control

Logic

HV Generator

EEPROM 

Array

Page Latches

YDEC

XDEC

Sense AMP

R/W Control

Memory

Control

Logic

SDA

SCL

V

CC

V

SS

VCLK

1K 2.5V Dual Mode I

2

C

 Serial EEPROM

DDC is a trademark of the Video Electronics Standards
Association.
I

2

C is a trademark of Philips Corporation.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 2

© 2008 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

()

V

CC

.............................................................................................................................................................................7.0V

All inputs and outputs w.r.t. V

SS

.........................................................................................................................................-

0.6V to V

CC

 +1.0V

Storage temperature ...............................................................................................................................-65

°C to +150°C

Ambient temperature with power applied ................................................................................................-40

°C to +125°C

ESD protection on all pins

......................................................................................................................................................≥ 4 kV

TABLE 1-1:

DC CHARACTERISTICS

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at those or any other conditions
above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

V

CC

 = +2.5V to 5.5V

Industrial (I): 

T

A

 =-40

°C to +85°C

Parameter

Symbol

Min.

Max.

Units

Conditions

SCL and SDA pins:

High-level input voltage
Low-level input voltage

V

IH

V

IL

0.7 V

CC

0.3 V

CC

V
V

Input levels on VCLK pin:

High-level input voltage
Low-level input voltage

V

IH

V

IL

2.0

0.2 V

CC

V
V

V

CC

 

≥ 2.7V (Note)

V

CC

 < 2.7V (Note)

Hysteresis of Schmitt Trigger inputs

 V

HYS

.05 V

CC

V

(Note)

Low-level output voltage

V

OL

1

0.4

V

I

OL

 = 3 mA, V

CC

 = 2.5V (Note)

Low-level output voltage

V

OL

2

0.6

V

I

OL

 = 6 mA, V

CC

 = 2.5V

Input leakage current

I

LI

±1

μA

V

IN

 = 0.1V to V

CC

Output leakage current

I

LO

±1

μA

V

OUT

 = 0.1V to V

CC

Pin capacitance (all inputs/outputs)

C

IN

, C

OUT

10

pF

V

CC

 = 5.0V (Note)

T

A

 = 25

°C, F

CLK

 = 1 MHz

Operating current

I

CC

 Write

I

CC

 Read


3
1

mA
mA

V

CC

 = 5.5V

V

CC

 = 5.5V, SCL = 400 kHz

Standby current

I

CCS


30

100

μA
μA

V

CC

 = 3.0V, SDA = SCL = V

CC

V

CC

 = 5.5V, SDA = SCL = V

CC

V

CLK

 = V

SS

Note:

This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 3

24LC21A

TABLE 1-2:

AC CHARACTERISTICS

Parameter

Symbol

Vcc = 2.5-5.5V

Standard Mode

Vcc = 4.5 - 5.5V

Fast Mode

Units

Remarks

Min.

Max.

Min.

Max.

Clock frequency

F

CLK

100

400

kHz

Clock high time

T

HIGH

4000

600

ns

Clock low time

T

LOW

4700

1300

ns

SDA and SCL rise time

T

R

1000

300

ns

(Note 1)

SDA and SCL fall time

T

F

300

300

ns

(Note 1)

Start condition hold time

T

HD

:

STA

4000

600

ns

After this period the first clock 
pulse is generated

Start condition setup time

T

SU

:

STA

4700

600

ns

Only relevant for repeated 
Start condition

Data input hold time

T

HD

:

DAT

0

0

ns

(Note 2)

Data input setup time

T

SU

:

DAT

250

100

ns

Stop condition setup time

T

SU

:

STO

4000

600

ns

Output valid from clock

T

AA

3500

900

ns

(Note 2)

Bus free time

T

BUF

4700

1300

ns

Time the bus must be free 
before a new transmission 
can start

Output fall time from V

IH

 

minimum to V

IL

 maximum

T

OF

250

20 + 0.1 

C

B

250

ns

(Note 1), C

B

 

≤ 100 pF

Input filter spike suppres-
sion (SDA and SCL pins)

T

SP

50

50

ns

(Note 3)

Write cycle time

T

WR

10

10

ms

Byte or Page mode

Transmit-Only Mode Parameters

Output valid from VCLK

T

VAA

2000

1000

ns

VCLK high time

T

VHIGH

4000

600

ns

VCLK low time

T

VLOW

4700

1300

ns

VCLK setup time

T

VHST

0

0

ns

VCLK hold time

T

SPVL

4000

600

ns

Mode transition time

T

VHZ

1000

500

ns

Transmit-only power-up 
time

T

VPU

0

0

ns

Input filter spike suppres-
sion (VCLK pin)

T

SPV

100

100

ns

Endurance

1M

1M

cycles

25°C, Vcc = 5.0V, Block 
mode (Note 4)

Note 1:

Not 100% tested. C

B

 = Total capacitance of one bus line in pF.

2:

As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region 
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3:

The combined T

SP

 and V

HYS

 specifications are due to Schmitt Trigger inputs which provide noise and 

spike suppression. This eliminates the need for a T

I

 specification for standard operation.

4:

This parameter is not tested but ensured by characterization. For endurance estimates in a specific 
application, please consult the Total Endurance™ Model which can be obtained from Microchip’s web site 
at www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 4

© 2008 Microchip Technology Inc.

2.0

FUNCTIONAL DESCRIPTION

The 24LC21A is designed to comply to the DDC
Standard proposed by VESA (Figure 3-3) with the
exception that it is not Access.bus capable. It operates
in two modes, the Transmit-Only mode and the
Bidirectional mode. There is a separate 2-wire protocol
to support each mode, each having a separate clock
input but sharing a common data line (SDA). The
device enters the Transmit-Only mode upon power-up.
In this mode, the device transmits data bits on the SDA
pin in response to a clock signal on the VCLK pin. The
device will remain in this mode until a valid high-to-low
transition is placed on the SCL input. When a valid
transition on SCL is recognized, the device will switch
into the Bidirectional mode and look for its control byte
to be sent by the master. If it detects its control byte, it
will stay in the Bidirectional mode. Otherwise, it will
revert to the Transmit-Only mode after it sees 128
VCLK pulses.

2.1

Transmit-Only Mode

The device will power-up in the Transmit-Only mode at
address 00h. This mode supports a unidirectional
2-wire protocol for continuous transmission of the
contents of the memory array. This device requires that

it be initialized prior to valid data being sent in the
Transmit-Only mode (Section 2.2 “Initialization Pro-
cedure”
).   In this mode, data is transmitted on the SDA
pin in 8-bit bytes, with each byte followed by a ninth,
null bit (Figure 2-1). The clock source for the Transmit-
Only mode is provided on the VCLK pin, and a data bit
is output on the rising edge on this pin. The eight bits in
each byte are transmitted Most Significant bit first.
Each byte within the memory array will be output in
sequence. After address 7Fh in the memory array is
transmitted, the internal Address Pointers will wrap
around to the first memory location (00h) and continue.
The Bidirectional mode Clock (SCL) pin must be held
high for the device to remain in the Transmit-Only
mode. 

2.2

Initialization Procedure

After V

CC

 has stabilized, the device will be in the Trans-

mit-Only mode. Nine clock cycles on the VCLK pin
must be given to the device for it to perform internal
sychronization. During this period, the SDA pin will be
in a high-impedance state. On the rising edge of the
tenth clock cycle, the device will output the first valid
data bit which will be the Most Significant bit in address
00h. (Figure 2-2). 

FIGURE 2-1:

TRANSMIT-ONLY MODE

FIGURE 2-2:

DEVICE INITIALIZATION

SCL

SDA

VCLK

Tvaa

Tvaa

Bit 1 (LSB)

Null Bit

Bit 1 (MSB)

Bit 7

Tvlow

Tvhigh

Tvaa

Tvaa

Bit 8

Bit 7

High-Impedance for 9 Clock Cycles

Tvpu

1

2

8

9

10

11

SCL

SDA

VCLK

Vcc

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 5

24LC21A

3.0

BIDIRECTIONAL MODE

Before the 24LC21A can be switched into the
Bidirectional mode (Figure 3-1), it must enter the
Transition mode, which is done by applying a valid
high-to-low transition on the Bidirectional mode clock
(SCL). As soon it enters the Transition mode, it looks
for a control byte ‘1010 000X’ on the I

2

C™ bus, and

starts to count pulses on VCLK. Any high-to-low transi-
tion on the SCL line will reset the count. If it sees a
pulse count of 128 on VCLK while the SCL line is idle,
it will revert back to the Transmit-Only mode, and
transmit its contents starting with the Most Significant
bit in address 00h. However, if it detects the control
byte on the I

2

C™ bus, (Figure 3-2) it will switch to the

in the Bidirectional mode. Once the device has made
the transition to the Bidirectional mode, the only way to
switch the device back to the Transmit-Only mode is to
remove power from the device. The mode transition
process is shown in detail in Figure 3-3.

Once the device has switched into the Bidirectional
mode, the VCLK input is disregarded, with the
exception that a logic high level is required to enable
write capability. This mode supports a two-wire
Bidirectional data transmission protocol (I

2

C™). In this

protocol, a device that sends data on the bus is defined
to be the transmitter, and a device that receives data
from the bus is defined to be the receiver. The bus must
be controlled by a master device that generates the
Bidirectional mode clock (SCL), controls access to the
bus and generates the Start and Stop conditions, while
the 24LC21A acts as the slave. Both master and slave
can operate as transmitter or receiver, but the master
device determines which mode is activated. In the
Bidirectional mode, the 24LC21A only responds to
commands for device ‘1010 000X’.

FIGURE 3-1:

MODE TRANSITION WITH RECOVERY TO TRANSMIT-ONLY MODE

FIGURE 3-2:

SUCCESSFUL MODE TRANSITION TO BIDIRECTIONAL MODE

TVHZ

SCL

SDA

VCLK

Transmit-Only

MODE

Bidirectional

Recovery to Transmit-Only mode

Bit 8

(MSB of data in 00h)

VCLK count =

 1        2       3       4         127   128

Transition mode with possibility to return to Transmit-Only mode

Bidirectional

permanently

SCL

SDA

         VCLK count =      1       2            n       0
VCLK

Transmit-Only

MODE

S

1

0

1

0

0

0

0

0

ACK

n < 128

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 6

© 2008 Microchip Technology Inc.

FIGURE 3-3:

DISPLAY OPERATION PER DDC

 

STANDARD PROPOSED BY VESA

®

Communication

is idle

Is Vsync

present?

No

Send EDID continuously

using Vsync as clock

High-to-Low

transition on

SCL?

No

Yes

Yes

Stop sending EDID.

Switch to DDC2™ mode.

Display has

transition state

?

optional

Set Vsync counter = 0

Change on

VCLK lines?

SCL, SDA or

No

Yes

High-Low

transition on SCL

?

Reset Vsync counter = 0

No

Yes

Valid

received?

DDC2 address

No

No

VCLK 

cycle?

Yes

Increment VCLK counter

Yes

Switch back to DDC1™

mode.

DDC2 communication

idle. Display waiting for

address byte.

DDC2B

address

received?

Yes

Receive DDC2B

command

Respond to DDC2B

command

Is display

Access.bus

TM

Yes

Valid Access.bus

address?

No

Yes

See Access.bus

specification to determine

correct procedure.

Yes

No

Yes

No

No

No

The 24LC21A was designed to

Display Power-on

or

DDC Circuit Powered

from +5 volts

or start timer

Reset counter or timer

(if appropriate)

Counter=128 or

timer expired?

High-to-Low
transition on

SCL?

No

Yes

comply to the portion of flowchart inside dash box

Note 1: The base flowchart is copyright 

© 1993, 1994, 1995 Video Electronic Standard Association (VESA) from

VESA’s Display Data Channel (DDC) Standard Proposal ver. 2p rev. 0, used by permission of VESA.

2: The dash box and text “The 24LC21A and... inside dash box.” are added by Microchip Technology Inc.

3: Vsync signal is normally used to derive a signal for VCLK pin on the 24LC21A.

capable?

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 7

24LC21A

3.1

Bidirectional Mode Bus 
Characteristics

The following bus protocol has been defined:

• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line while the clock line is high will be 
interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been
defined (Figure 3-4).

3.1.1

BUS NOT BUSY (A)

Both data and clock lines remain high.

3.1.2

START DATA TRANSFER (B)

A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.

3.1.3

STOP DATA TRANSFER (C)

A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must be ended with a Stop condition.

3.1.4

DATA VALID (D)

The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.

The data on the line must be changed during the low
period of the clock signal. There is one clock pulse per
bit of data.

Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master device and is
theoretically unlimited, although only the last eight will
be stored when doing a write operation. When an
overwrite does occur it will replace data in a first-in first-
out (FIFO) fashion.

3.1.5

ACKNOWLEDGE

Each receiving device, when addressed, is obliged to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this Acknowledge bit.

The device that acknowledges has to pull down the
SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable low during the high
period of the acknowledge related clock pulse.   Of
course, setup and hold times must be taken into
account. A master must signal an end of data to the
slave by not generating an Acknowledge bit on the last
byte that has been clocked out of the slave. In this
case, the slave must leave the data line high to enable
the master to generate the Stop condition.

FIGURE 3-4:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS

Note:

Once switched into Bidirectional mode, the
24LC21A will remain in that mode until
power is removed. Removing power is the
only way to reset the 24LC21A into the
Transmit-Only mode.

Note:

The 24LC21A does not generate any
Acknowledge bits if an internal
programming cycle is in progress.

(A)

(B)

(D)

(D)

(A)

(C)

Start

Condition

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

SCL

SDA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 8

© 2008 Microchip Technology Inc.

FIGURE 3-5:

BUS TIMING START/STOP

FIGURE 3-6:

BUS TIMING DATA

3.1.6

SLAVE ADDRESS

After generating a Start condition, the bus master
transmits the slave address consisting of a 7-bit device
code (1010000) for the 24LC21A.

The eighth bit of slave address determines whether the
master device wants to read or write to the 24LC21A
(Figure 3-7).

The 24LC21A monitors the bus for its corresponding
slave address continuously. It generates an
Acknowledge bit if the slave address was true and it is
not in a programming mode.

FIGURE 3-7:

CONTROL BYTE 
ALLOCATION

SCL

SDA

Start

Stop

V

HYS

T

SU

:

STO

T

HD

:

STA

T

SU

:

STA

SCL

SDA
IN

SDA
OUT

T

SU

:

STA

T

SP

T

AA

T

F

T

LOW

T

HIGH

T

HD

:

STA

T

HD

:

DAT

T

SU

:

DAT

T

SU

:

STO

T

BUF

T

AA

T

R

Operation

Slave Address

R/W

Read

1010000

1

Write

1010000

0

R/W

A

1

0

1

0

0

0

0

Read/Write

Start

Slave Address

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 9

24LC21A

4.0

WRITE OPERATION

4.1

Byte Write

Following the start signal from the master, the slave
address (four bits), three zero bits (000) and the R/W
bit which is a logic low are placed onto the bus by the
master transmitter. This indicates to the addressed
slave receiver that a byte with a word address will
follow after it has generated an Acknowledge bit during
the ninth clock cycle. Therefore, the next byte
transmitted by the master is the word address and will
be written into the Address Pointer of the 24LC21A.
After receiving another acknowledge signal from the
24LC21A the master device will transmit the data word
to be written into the addressed memory location. The
24LC21A acknowledges again and the master
generates a Stop condition. This initiates the internal
write cycle, and during this time the 24LC21A will not
generate acknowledge signals (Figure 4-1).

It is required that VCLK be held at a logic high level
during command and data transfer in order to program
the device. This applies to both byte write and page
write operation. Note, however, that the VCLK is
ignored during the self-timed program operation.
Changing VCLK from high-to-low during the self-timed
program operation will not halt programming of the
device. 

4.2

Page Write 

The write control byte, word address and the first data
byte are transmitted to the 24LC21A in the same way
as in a byte write. But instead of generating a Stop
condition the master transmits up to eight data bytes to
the 24LC21A which are temporarily stored in the on-
chip page buffer and will be written into the memory
after the master has transmitted a Stop condition. After
the receipt of each word, the three lower order Address
Pointer bits are internally incremented by one. The
higher order five bits of the word address remains
constant. If the master should transmit more than eight
words prior to generating the Stop condition, the
address counter will roll over and the previously
received data will be overwritten. As with the byte write
operation, once the Stop condition is received an
internal write cycle will begin (Figure 4-3).

It is required that VCLK be held at a logic high level
during command and data transfer in order to program
the device. This applies to both byte write and page
write operation. Note, however, that the VCLK is
ignored during the self-timed program operation.
Changing VCLK from high-to-low during the self-timed
program operation will not halt programming of the
device. 

Note:

Page write operations are limited to writing
bytes within a single physical page,
regardless of the number of bytes actually
being written. Physical page boundaries
start at addresses that are integer multi-
ples of the page buffer size (or ‘page size’)
and end at addresses that are integer
multiples of [page size – 1]. If a Page Write
command attempts to write across a
physical page boundary, the result is that
the data wraps around to the beginning of
the current page (overwriting data
previously stored there), instead of being
written to the next page as might be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 10

© 2008 Microchip Technology Inc.

FIGURE 4-1:

BYTE WRITE

FIGURE 4-2:

VCLK WRITE ENABLE TIMING

FIGURE 4-3:

PAGE WRITE

Bus Activity
Master

SDA Line

Bus Activity

Control

Byte

Word

Address

Data

S
T

O

P

S

T

A

R

T

A

C

K

S

P

A
C
K

A
C
K

VCLK

SCL

SDA

IN

VCLK

T

HD

:

STA

T

HD

:

STO

T

VHST

T

SPVL

SDA Line

Control

Byte

Word

Address

S

T

O

P

S

T

A

R

T

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

Data n + 1

Data n + 7

Data (n)

P

S

VCLK

Bus Activity
Master

Bus Activity

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 1

24LC21A

Features:

• Single Supply with Operation Down to 2.5V

• Completely Implements DDC1™/DDC2™ 

Interface for Monitor Identification, Including 
Recovery to DDC1

• Pin and Function Compatible with 24LC21

• Low-Power CMOS Technology

- 1 mA typical active current 

- 10 

μA standby current typical at 5.5V

• 2-Wire Serial Interface Bus, I

2

C™ Compatible 

• 100 kHz (2.5V) and 400 kHz (5V) Compatibility

• Self-Timed Write Cycle (including auto-erase)

• Page Write Buffer for up to Eight Bytes

•  1,000,000 Erase/Write Cycles Ensured

• Data Retention > 200 years

• ESD Protection > 4000V

• 8-pin PDIP and SOIC Package

• Available for Extended Temperature Ranges

• Pb-Free and RoHS Compliant

Description:

The Microchip Technology Inc. 24LC21A is a 128 x 8-bit
dual-mode Electrically Erasable PROM. This device is
designed for use in applications requiring storage and
serial transmission of configuration and control informa-
tion. Two modes of operation have been implemented:
Transmit-Only mode and Bidirectional mode. Upon
power-up, the device will be in the Transmit-Only mode,
sending a serial bit stream of the memory array from 00h
to 7Fh, clocked by the VCLK pin. A valid high-to-low
transition on the SCL pin will cause the device to enter
the transition mode, and look for a valid control byte on
the I

2

C bus. If it detects a valid control byte from the

master, it will switch into Bidirectional mode, with byte
selectable read/write capability of the memory array
using SCL. If no control byte is received, the device will
revert to the Transmit-Only mode after it receives 128
consecutive VCLK pulses while the SCL pin is idle. The
24LC21A is available in a standard 8-pin PDIP and
SOIC package in industrial temperature range.

Package Types

Block Diagram

Pin Function Table

- Industrial (I):

-40°C to

+85°C

Name

Function

V

SS

Ground

SDA

Serial Address/Data I/O

SCL

Serial Clock (Bidirectional mode)

VCLK

Serial Clock (Transmit-Only mode)

V

CC

+2.5V to 5.5V Power Supply

NC

No Connection

PDIP

SOIC

24

LC

21

A

NC

NC

NC

V

SS

1

2

3

4

8

7

6

5

Vcc

VCLK

SCL

SDA

24L

C

21A

NC

NC

NC

Vss

1

2

3

4

8

7

6

5

Vcc

VCLK

SCL

SDA

I/O

Control

Logic

HV Generator

EEPROM 

Array

Page Latches

YDEC

XDEC

Sense AMP

R/W Control

Memory

Control

Logic

SDA

SCL

V

CC

V

SS

VCLK

1K 2.5V Dual Mode I

2

C

 Serial EEPROM

DDC is a trademark of the Video Electronics Standards
Association.
I

2

C is a trademark of Philips Corporation.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 2

© 2008 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

()

V

CC

.............................................................................................................................................................................7.0V

All inputs and outputs w.r.t. V

SS

.........................................................................................................................................-

0.6V to V

CC

 +1.0V

Storage temperature ...............................................................................................................................-65

°C to +150°C

Ambient temperature with power applied ................................................................................................-40

°C to +125°C

ESD protection on all pins

......................................................................................................................................................≥ 4 kV

TABLE 1-1:

DC CHARACTERISTICS

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at those or any other conditions
above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

V

CC

 = +2.5V to 5.5V

Industrial (I): 

T

A

 =-40

°C to +85°C

Parameter

Symbol

Min.

Max.

Units

Conditions

SCL and SDA pins:

High-level input voltage
Low-level input voltage

V

IH

V

IL

0.7 V

CC

0.3 V

CC

V
V

Input levels on VCLK pin:

High-level input voltage
Low-level input voltage

V

IH

V

IL

2.0

0.2 V

CC

V
V

V

CC

 

≥ 2.7V (Note)

V

CC

 < 2.7V (Note)

Hysteresis of Schmitt Trigger inputs

 V

HYS

.05 V

CC

V

(Note)

Low-level output voltage

V

OL

1

0.4

V

I

OL

 = 3 mA, V

CC

 = 2.5V (Note)

Low-level output voltage

V

OL

2

0.6

V

I

OL

 = 6 mA, V

CC

 = 2.5V

Input leakage current

I

LI

±1

μA

V

IN

 = 0.1V to V

CC

Output leakage current

I

LO

±1

μA

V

OUT

 = 0.1V to V

CC

Pin capacitance (all inputs/outputs)

C

IN

, C

OUT

10

pF

V

CC

 = 5.0V (Note)

T

A

 = 25

°C, F

CLK

 = 1 MHz

Operating current

I

CC

 Write

I

CC

 Read


3
1

mA
mA

V

CC

 = 5.5V

V

CC

 = 5.5V, SCL = 400 kHz

Standby current

I

CCS


30

100

μA
μA

V

CC

 = 3.0V, SDA = SCL = V

CC

V

CC

 = 5.5V, SDA = SCL = V

CC

V

CLK

 = V

SS

Note:

This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 3

24LC21A

TABLE 1-2:

AC CHARACTERISTICS

Parameter

Symbol

Vcc = 2.5-5.5V

Standard Mode

Vcc = 4.5 - 5.5V

Fast Mode

Units

Remarks

Min.

Max.

Min.

Max.

Clock frequency

F

CLK

100

400

kHz

Clock high time

T

HIGH

4000

600

ns

Clock low time

T

LOW

4700

1300

ns

SDA and SCL rise time

T

R

1000

300

ns

(Note 1)

SDA and SCL fall time

T

F

300

300

ns

(Note 1)

Start condition hold time

T

HD

:

STA

4000

600

ns

After this period the first clock 
pulse is generated

Start condition setup time

T

SU

:

STA

4700

600

ns

Only relevant for repeated 
Start condition

Data input hold time

T

HD

:

DAT

0

0

ns

(Note 2)

Data input setup time

T

SU

:

DAT

250

100

ns

Stop condition setup time

T

SU

:

STO

4000

600

ns

Output valid from clock

T

AA

3500

900

ns

(Note 2)

Bus free time

T

BUF

4700

1300

ns

Time the bus must be free 
before a new transmission 
can start

Output fall time from V

IH

 

minimum to V

IL

 maximum

T

OF

250

20 + 0.1 

C

B

250

ns

(Note 1), C

B

 

≤ 100 pF

Input filter spike suppres-
sion (SDA and SCL pins)

T

SP

50

50

ns

(Note 3)

Write cycle time

T

WR

10

10

ms

Byte or Page mode

Transmit-Only Mode Parameters

Output valid from VCLK

T

VAA

2000

1000

ns

VCLK high time

T

VHIGH

4000

600

ns

VCLK low time

T

VLOW

4700

1300

ns

VCLK setup time

T

VHST

0

0

ns

VCLK hold time

T

SPVL

4000

600

ns

Mode transition time

T

VHZ

1000

500

ns

Transmit-only power-up 
time

T

VPU

0

0

ns

Input filter spike suppres-
sion (VCLK pin)

T

SPV

100

100

ns

Endurance

1M

1M

cycles

25°C, Vcc = 5.0V, Block 
mode (Note 4)

Note 1:

Not 100% tested. C

B

 = Total capacitance of one bus line in pF.

2:

As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region 
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3:

The combined T

SP

 and V

HYS

 specifications are due to Schmitt Trigger inputs which provide noise and 

spike suppression. This eliminates the need for a T

I

 specification for standard operation.

4:

This parameter is not tested but ensured by characterization. For endurance estimates in a specific 
application, please consult the Total Endurance™ Model which can be obtained from Microchip’s web site 
at www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 4

© 2008 Microchip Technology Inc.

2.0

FUNCTIONAL DESCRIPTION

The 24LC21A is designed to comply to the DDC
Standard proposed by VESA (Figure 3-3) with the
exception that it is not Access.bus capable. It operates
in two modes, the Transmit-Only mode and the
Bidirectional mode. There is a separate 2-wire protocol
to support each mode, each having a separate clock
input but sharing a common data line (SDA). The
device enters the Transmit-Only mode upon power-up.
In this mode, the device transmits data bits on the SDA
pin in response to a clock signal on the VCLK pin. The
device will remain in this mode until a valid high-to-low
transition is placed on the SCL input. When a valid
transition on SCL is recognized, the device will switch
into the Bidirectional mode and look for its control byte
to be sent by the master. If it detects its control byte, it
will stay in the Bidirectional mode. Otherwise, it will
revert to the Transmit-Only mode after it sees 128
VCLK pulses.

2.1

Transmit-Only Mode

The device will power-up in the Transmit-Only mode at
address 00h. This mode supports a unidirectional
2-wire protocol for continuous transmission of the
contents of the memory array. This device requires that

it be initialized prior to valid data being sent in the
Transmit-Only mode (Section 2.2 “Initialization Pro-
cedure”
).   In this mode, data is transmitted on the SDA
pin in 8-bit bytes, with each byte followed by a ninth,
null bit (Figure 2-1). The clock source for the Transmit-
Only mode is provided on the VCLK pin, and a data bit
is output on the rising edge on this pin. The eight bits in
each byte are transmitted Most Significant bit first.
Each byte within the memory array will be output in
sequence. After address 7Fh in the memory array is
transmitted, the internal Address Pointers will wrap
around to the first memory location (00h) and continue.
The Bidirectional mode Clock (SCL) pin must be held
high for the device to remain in the Transmit-Only
mode. 

2.2

Initialization Procedure

After V

CC

 has stabilized, the device will be in the Trans-

mit-Only mode. Nine clock cycles on the VCLK pin
must be given to the device for it to perform internal
sychronization. During this period, the SDA pin will be
in a high-impedance state. On the rising edge of the
tenth clock cycle, the device will output the first valid
data bit which will be the Most Significant bit in address
00h. (Figure 2-2). 

FIGURE 2-1:

TRANSMIT-ONLY MODE

FIGURE 2-2:

DEVICE INITIALIZATION

SCL

SDA

VCLK

Tvaa

Tvaa

Bit 1 (LSB)

Null Bit

Bit 1 (MSB)

Bit 7

Tvlow

Tvhigh

Tvaa

Tvaa

Bit 8

Bit 7

High-Impedance for 9 Clock Cycles

Tvpu

1

2

8

9

10

11

SCL

SDA

VCLK

Vcc

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 5

24LC21A

3.0

BIDIRECTIONAL MODE

Before the 24LC21A can be switched into the
Bidirectional mode (Figure 3-1), it must enter the
Transition mode, which is done by applying a valid
high-to-low transition on the Bidirectional mode clock
(SCL). As soon it enters the Transition mode, it looks
for a control byte ‘1010 000X’ on the I

2

C™ bus, and

starts to count pulses on VCLK. Any high-to-low transi-
tion on the SCL line will reset the count. If it sees a
pulse count of 128 on VCLK while the SCL line is idle,
it will revert back to the Transmit-Only mode, and
transmit its contents starting with the Most Significant
bit in address 00h. However, if it detects the control
byte on the I

2

C™ bus, (Figure 3-2) it will switch to the

in the Bidirectional mode. Once the device has made
the transition to the Bidirectional mode, the only way to
switch the device back to the Transmit-Only mode is to
remove power from the device. The mode transition
process is shown in detail in Figure 3-3.

Once the device has switched into the Bidirectional
mode, the VCLK input is disregarded, with the
exception that a logic high level is required to enable
write capability. This mode supports a two-wire
Bidirectional data transmission protocol (I

2

C™). In this

protocol, a device that sends data on the bus is defined
to be the transmitter, and a device that receives data
from the bus is defined to be the receiver. The bus must
be controlled by a master device that generates the
Bidirectional mode clock (SCL), controls access to the
bus and generates the Start and Stop conditions, while
the 24LC21A acts as the slave. Both master and slave
can operate as transmitter or receiver, but the master
device determines which mode is activated. In the
Bidirectional mode, the 24LC21A only responds to
commands for device ‘1010 000X’.

FIGURE 3-1:

MODE TRANSITION WITH RECOVERY TO TRANSMIT-ONLY MODE

FIGURE 3-2:

SUCCESSFUL MODE TRANSITION TO BIDIRECTIONAL MODE

TVHZ

SCL

SDA

VCLK

Transmit-Only

MODE

Bidirectional

Recovery to Transmit-Only mode

Bit 8

(MSB of data in 00h)

VCLK count =

 1        2       3       4         127   128

Transition mode with possibility to return to Transmit-Only mode

Bidirectional

permanently

SCL

SDA

         VCLK count =      1       2            n       0
VCLK

Transmit-Only

MODE

S

1

0

1

0

0

0

0

0

ACK

n < 128

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 6

© 2008 Microchip Technology Inc.

FIGURE 3-3:

DISPLAY OPERATION PER DDC

 

STANDARD PROPOSED BY VESA

®

Communication

is idle

Is Vsync

present?

No

Send EDID continuously

using Vsync as clock

High-to-Low

transition on

SCL?

No

Yes

Yes

Stop sending EDID.

Switch to DDC2™ mode.

Display has

transition state

?

optional

Set Vsync counter = 0

Change on

VCLK lines?

SCL, SDA or

No

Yes

High-Low

transition on SCL

?

Reset Vsync counter = 0

No

Yes

Valid

received?

DDC2 address

No

No

VCLK 

cycle?

Yes

Increment VCLK counter

Yes

Switch back to DDC1™

mode.

DDC2 communication

idle. Display waiting for

address byte.

DDC2B

address

received?

Yes

Receive DDC2B

command

Respond to DDC2B

command

Is display

Access.bus

TM

Yes

Valid Access.bus

address?

No

Yes

See Access.bus

specification to determine

correct procedure.

Yes

No

Yes

No

No

No

The 24LC21A was designed to

Display Power-on

or

DDC Circuit Powered

from +5 volts

or start timer

Reset counter or timer

(if appropriate)

Counter=128 or

timer expired?

High-to-Low
transition on

SCL?

No

Yes

comply to the portion of flowchart inside dash box

Note 1: The base flowchart is copyright 

© 1993, 1994, 1995 Video Electronic Standard Association (VESA) from

VESA’s Display Data Channel (DDC) Standard Proposal ver. 2p rev. 0, used by permission of VESA.

2: The dash box and text “The 24LC21A and... inside dash box.” are added by Microchip Technology Inc.

3: Vsync signal is normally used to derive a signal for VCLK pin on the 24LC21A.

capable?

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 7

24LC21A

3.1

Bidirectional Mode Bus 
Characteristics

The following bus protocol has been defined:

• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line while the clock line is high will be 
interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been
defined (Figure 3-4).

3.1.1

BUS NOT BUSY (A)

Both data and clock lines remain high.

3.1.2

START DATA TRANSFER (B)

A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.

3.1.3

STOP DATA TRANSFER (C)

A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must be ended with a Stop condition.

3.1.4

DATA VALID (D)

The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.

The data on the line must be changed during the low
period of the clock signal. There is one clock pulse per
bit of data.

Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master device and is
theoretically unlimited, although only the last eight will
be stored when doing a write operation. When an
overwrite does occur it will replace data in a first-in first-
out (FIFO) fashion.

3.1.5

ACKNOWLEDGE

Each receiving device, when addressed, is obliged to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this Acknowledge bit.

The device that acknowledges has to pull down the
SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable low during the high
period of the acknowledge related clock pulse.   Of
course, setup and hold times must be taken into
account. A master must signal an end of data to the
slave by not generating an Acknowledge bit on the last
byte that has been clocked out of the slave. In this
case, the slave must leave the data line high to enable
the master to generate the Stop condition.

FIGURE 3-4:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS

Note:

Once switched into Bidirectional mode, the
24LC21A will remain in that mode until
power is removed. Removing power is the
only way to reset the 24LC21A into the
Transmit-Only mode.

Note:

The 24LC21A does not generate any
Acknowledge bits if an internal
programming cycle is in progress.

(A)

(B)

(D)

(D)

(A)

(C)

Start

Condition

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

SCL

SDA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 8

© 2008 Microchip Technology Inc.

FIGURE 3-5:

BUS TIMING START/STOP

FIGURE 3-6:

BUS TIMING DATA

3.1.6

SLAVE ADDRESS

After generating a Start condition, the bus master
transmits the slave address consisting of a 7-bit device
code (1010000) for the 24LC21A.

The eighth bit of slave address determines whether the
master device wants to read or write to the 24LC21A
(Figure 3-7).

The 24LC21A monitors the bus for its corresponding
slave address continuously. It generates an
Acknowledge bit if the slave address was true and it is
not in a programming mode.

FIGURE 3-7:

CONTROL BYTE 
ALLOCATION

SCL

SDA

Start

Stop

V

HYS

T

SU

:

STO

T

HD

:

STA

T

SU

:

STA

SCL

SDA
IN

SDA
OUT

T

SU

:

STA

T

SP

T

AA

T

F

T

LOW

T

HIGH

T

HD

:

STA

T

HD

:

DAT

T

SU

:

DAT

T

SU

:

STO

T

BUF

T

AA

T

R

Operation

Slave Address

R/W

Read

1010000

1

Write

1010000

0

R/W

A

1

0

1

0

0

0

0

Read/Write

Start

Slave Address

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 9

24LC21A

4.0

WRITE OPERATION

4.1

Byte Write

Following the start signal from the master, the slave
address (four bits), three zero bits (000) and the R/W
bit which is a logic low are placed onto the bus by the
master transmitter. This indicates to the addressed
slave receiver that a byte with a word address will
follow after it has generated an Acknowledge bit during
the ninth clock cycle. Therefore, the next byte
transmitted by the master is the word address and will
be written into the Address Pointer of the 24LC21A.
After receiving another acknowledge signal from the
24LC21A the master device will transmit the data word
to be written into the addressed memory location. The
24LC21A acknowledges again and the master
generates a Stop condition. This initiates the internal
write cycle, and during this time the 24LC21A will not
generate acknowledge signals (Figure 4-1).

It is required that VCLK be held at a logic high level
during command and data transfer in order to program
the device. This applies to both byte write and page
write operation. Note, however, that the VCLK is
ignored during the self-timed program operation.
Changing VCLK from high-to-low during the self-timed
program operation will not halt programming of the
device. 

4.2

Page Write 

The write control byte, word address and the first data
byte are transmitted to the 24LC21A in the same way
as in a byte write. But instead of generating a Stop
condition the master transmits up to eight data bytes to
the 24LC21A which are temporarily stored in the on-
chip page buffer and will be written into the memory
after the master has transmitted a Stop condition. After
the receipt of each word, the three lower order Address
Pointer bits are internally incremented by one. The
higher order five bits of the word address remains
constant. If the master should transmit more than eight
words prior to generating the Stop condition, the
address counter will roll over and the previously
received data will be overwritten. As with the byte write
operation, once the Stop condition is received an
internal write cycle will begin (Figure 4-3).

It is required that VCLK be held at a logic high level
during command and data transfer in order to program
the device. This applies to both byte write and page
write operation. Note, however, that the VCLK is
ignored during the self-timed program operation.
Changing VCLK from high-to-low during the self-timed
program operation will not halt programming of the
device. 

Note:

Page write operations are limited to writing
bytes within a single physical page,
regardless of the number of bytes actually
being written. Physical page boundaries
start at addresses that are integer multi-
ples of the page buffer size (or ‘page size’)
and end at addresses that are integer
multiples of [page size – 1]. If a Page Write
command attempts to write across a
physical page boundary, the result is that
the data wraps around to the beginning of
the current page (overwriting data
previously stored there), instead of being
written to the next page as might be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 10

© 2008 Microchip Technology Inc.

FIGURE 4-1:

BYTE WRITE

FIGURE 4-2:

VCLK WRITE ENABLE TIMING

FIGURE 4-3:

PAGE WRITE

Bus Activity
Master

SDA Line

Bus Activity

Control

Byte

Word

Address

Data

S
T

O

P

S

T

A

R

T

A

C

K

S

P

A
C
K

A
C
K

VCLK

SCL

SDA

IN

VCLK

T

HD

:

STA

T

HD

:

STO

T

VHST

T

SPVL

SDA Line

Control

Byte

Word

Address

S

T

O

P

S

T

A

R

T

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

Data n + 1

Data n + 7

Data (n)

P

S

VCLK

Bus Activity
Master

Bus Activity

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 1

24LC21A

Features:

• Single Supply with Operation Down to 2.5V

• Completely Implements DDC1™/DDC2™ 

Interface for Monitor Identification, Including 
Recovery to DDC1

• Pin and Function Compatible with 24LC21

• Low-Power CMOS Technology

- 1 mA typical active current 

- 10 

μA standby current typical at 5.5V

• 2-Wire Serial Interface Bus, I

2

C™ Compatible 

• 100 kHz (2.5V) and 400 kHz (5V) Compatibility

• Self-Timed Write Cycle (including auto-erase)

• Page Write Buffer for up to Eight Bytes

•  1,000,000 Erase/Write Cycles Ensured

• Data Retention > 200 years

• ESD Protection > 4000V

• 8-pin PDIP and SOIC Package

• Available for Extended Temperature Ranges

• Pb-Free and RoHS Compliant

Description:

The Microchip Technology Inc. 24LC21A is a 128 x 8-bit
dual-mode Electrically Erasable PROM. This device is
designed for use in applications requiring storage and
serial transmission of configuration and control informa-
tion. Two modes of operation have been implemented:
Transmit-Only mode and Bidirectional mode. Upon
power-up, the device will be in the Transmit-Only mode,
sending a serial bit stream of the memory array from 00h
to 7Fh, clocked by the VCLK pin. A valid high-to-low
transition on the SCL pin will cause the device to enter
the transition mode, and look for a valid control byte on
the I

2

C bus. If it detects a valid control byte from the

master, it will switch into Bidirectional mode, with byte
selectable read/write capability of the memory array
using SCL. If no control byte is received, the device will
revert to the Transmit-Only mode after it receives 128
consecutive VCLK pulses while the SCL pin is idle. The
24LC21A is available in a standard 8-pin PDIP and
SOIC package in industrial temperature range.

Package Types

Block Diagram

Pin Function Table

- Industrial (I):

-40°C to

+85°C

Name

Function

V

SS

Ground

SDA

Serial Address/Data I/O

SCL

Serial Clock (Bidirectional mode)

VCLK

Serial Clock (Transmit-Only mode)

V

CC

+2.5V to 5.5V Power Supply

NC

No Connection

PDIP

SOIC

24

LC

21

A

NC

NC

NC

V

SS

1

2

3

4

8

7

6

5

Vcc

VCLK

SCL

SDA

24L

C

21A

NC

NC

NC

Vss

1

2

3

4

8

7

6

5

Vcc

VCLK

SCL

SDA

I/O

Control

Logic

HV Generator

EEPROM 

Array

Page Latches

YDEC

XDEC

Sense AMP

R/W Control

Memory

Control

Logic

SDA

SCL

V

CC

V

SS

VCLK

1K 2.5V Dual Mode I

2

C

 Serial EEPROM

DDC is a trademark of the Video Electronics Standards
Association.
I

2

C is a trademark of Philips Corporation.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 2

© 2008 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

()

V

CC

.............................................................................................................................................................................7.0V

All inputs and outputs w.r.t. V

SS

.........................................................................................................................................-

0.6V to V

CC

 +1.0V

Storage temperature ...............................................................................................................................-65

°C to +150°C

Ambient temperature with power applied ................................................................................................-40

°C to +125°C

ESD protection on all pins

......................................................................................................................................................≥ 4 kV

TABLE 1-1:

DC CHARACTERISTICS

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at those or any other conditions
above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

V

CC

 = +2.5V to 5.5V

Industrial (I): 

T

A

 =-40

°C to +85°C

Parameter

Symbol

Min.

Max.

Units

Conditions

SCL and SDA pins:

High-level input voltage
Low-level input voltage

V

IH

V

IL

0.7 V

CC

0.3 V

CC

V
V

Input levels on VCLK pin:

High-level input voltage
Low-level input voltage

V

IH

V

IL

2.0

0.2 V

CC

V
V

V

CC

 

≥ 2.7V (Note)

V

CC

 < 2.7V (Note)

Hysteresis of Schmitt Trigger inputs

 V

HYS

.05 V

CC

V

(Note)

Low-level output voltage

V

OL

1

0.4

V

I

OL

 = 3 mA, V

CC

 = 2.5V (Note)

Low-level output voltage

V

OL

2

0.6

V

I

OL

 = 6 mA, V

CC

 = 2.5V

Input leakage current

I

LI

±1

μA

V

IN

 = 0.1V to V

CC

Output leakage current

I

LO

±1

μA

V

OUT

 = 0.1V to V

CC

Pin capacitance (all inputs/outputs)

C

IN

, C

OUT

10

pF

V

CC

 = 5.0V (Note)

T

A

 = 25

°C, F

CLK

 = 1 MHz

Operating current

I

CC

 Write

I

CC

 Read


3
1

mA
mA

V

CC

 = 5.5V

V

CC

 = 5.5V, SCL = 400 kHz

Standby current

I

CCS


30

100

μA
μA

V

CC

 = 3.0V, SDA = SCL = V

CC

V

CC

 = 5.5V, SDA = SCL = V

CC

V

CLK

 = V

SS

Note:

This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 3

24LC21A

TABLE 1-2:

AC CHARACTERISTICS

Parameter

Symbol

Vcc = 2.5-5.5V

Standard Mode

Vcc = 4.5 - 5.5V

Fast Mode

Units

Remarks

Min.

Max.

Min.

Max.

Clock frequency

F

CLK

100

400

kHz

Clock high time

T

HIGH

4000

600

ns

Clock low time

T

LOW

4700

1300

ns

SDA and SCL rise time

T

R

1000

300

ns

(Note 1)

SDA and SCL fall time

T

F

300

300

ns

(Note 1)

Start condition hold time

T

HD

:

STA

4000

600

ns

After this period the first clock 
pulse is generated

Start condition setup time

T

SU

:

STA

4700

600

ns

Only relevant for repeated 
Start condition

Data input hold time

T

HD

:

DAT

0

0

ns

(Note 2)

Data input setup time

T

SU

:

DAT

250

100

ns

Stop condition setup time

T

SU

:

STO

4000

600

ns

Output valid from clock

T

AA

3500

900

ns

(Note 2)

Bus free time

T

BUF

4700

1300

ns

Time the bus must be free 
before a new transmission 
can start

Output fall time from V

IH

 

minimum to V

IL

 maximum

T

OF

250

20 + 0.1 

C

B

250

ns

(Note 1), C

B

 

≤ 100 pF

Input filter spike suppres-
sion (SDA and SCL pins)

T

SP

50

50

ns

(Note 3)

Write cycle time

T

WR

10

10

ms

Byte or Page mode

Transmit-Only Mode Parameters

Output valid from VCLK

T

VAA

2000

1000

ns

VCLK high time

T

VHIGH

4000

600

ns

VCLK low time

T

VLOW

4700

1300

ns

VCLK setup time

T

VHST

0

0

ns

VCLK hold time

T

SPVL

4000

600

ns

Mode transition time

T

VHZ

1000

500

ns

Transmit-only power-up 
time

T

VPU

0

0

ns

Input filter spike suppres-
sion (VCLK pin)

T

SPV

100

100

ns

Endurance

1M

1M

cycles

25°C, Vcc = 5.0V, Block 
mode (Note 4)

Note 1:

Not 100% tested. C

B

 = Total capacitance of one bus line in pF.

2:

As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region 
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3:

The combined T

SP

 and V

HYS

 specifications are due to Schmitt Trigger inputs which provide noise and 

spike suppression. This eliminates the need for a T

I

 specification for standard operation.

4:

This parameter is not tested but ensured by characterization. For endurance estimates in a specific 
application, please consult the Total Endurance™ Model which can be obtained from Microchip’s web site 
at www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 4

© 2008 Microchip Technology Inc.

2.0

FUNCTIONAL DESCRIPTION

The 24LC21A is designed to comply to the DDC
Standard proposed by VESA (Figure 3-3) with the
exception that it is not Access.bus capable. It operates
in two modes, the Transmit-Only mode and the
Bidirectional mode. There is a separate 2-wire protocol
to support each mode, each having a separate clock
input but sharing a common data line (SDA). The
device enters the Transmit-Only mode upon power-up.
In this mode, the device transmits data bits on the SDA
pin in response to a clock signal on the VCLK pin. The
device will remain in this mode until a valid high-to-low
transition is placed on the SCL input. When a valid
transition on SCL is recognized, the device will switch
into the Bidirectional mode and look for its control byte
to be sent by the master. If it detects its control byte, it
will stay in the Bidirectional mode. Otherwise, it will
revert to the Transmit-Only mode after it sees 128
VCLK pulses.

2.1

Transmit-Only Mode

The device will power-up in the Transmit-Only mode at
address 00h. This mode supports a unidirectional
2-wire protocol for continuous transmission of the
contents of the memory array. This device requires that

it be initialized prior to valid data being sent in the
Transmit-Only mode (Section 2.2 “Initialization Pro-
cedure”
).   In this mode, data is transmitted on the SDA
pin in 8-bit bytes, with each byte followed by a ninth,
null bit (Figure 2-1). The clock source for the Transmit-
Only mode is provided on the VCLK pin, and a data bit
is output on the rising edge on this pin. The eight bits in
each byte are transmitted Most Significant bit first.
Each byte within the memory array will be output in
sequence. After address 7Fh in the memory array is
transmitted, the internal Address Pointers will wrap
around to the first memory location (00h) and continue.
The Bidirectional mode Clock (SCL) pin must be held
high for the device to remain in the Transmit-Only
mode. 

2.2

Initialization Procedure

After V

CC

 has stabilized, the device will be in the Trans-

mit-Only mode. Nine clock cycles on the VCLK pin
must be given to the device for it to perform internal
sychronization. During this period, the SDA pin will be
in a high-impedance state. On the rising edge of the
tenth clock cycle, the device will output the first valid
data bit which will be the Most Significant bit in address
00h. (Figure 2-2). 

FIGURE 2-1:

TRANSMIT-ONLY MODE

FIGURE 2-2:

DEVICE INITIALIZATION

SCL

SDA

VCLK

Tvaa

Tvaa

Bit 1 (LSB)

Null Bit

Bit 1 (MSB)

Bit 7

Tvlow

Tvhigh

Tvaa

Tvaa

Bit 8

Bit 7

High-Impedance for 9 Clock Cycles

Tvpu

1

2

8

9

10

11

SCL

SDA

VCLK

Vcc

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 5

24LC21A

3.0

BIDIRECTIONAL MODE

Before the 24LC21A can be switched into the
Bidirectional mode (Figure 3-1), it must enter the
Transition mode, which is done by applying a valid
high-to-low transition on the Bidirectional mode clock
(SCL). As soon it enters the Transition mode, it looks
for a control byte ‘1010 000X’ on the I

2

C™ bus, and

starts to count pulses on VCLK. Any high-to-low transi-
tion on the SCL line will reset the count. If it sees a
pulse count of 128 on VCLK while the SCL line is idle,
it will revert back to the Transmit-Only mode, and
transmit its contents starting with the Most Significant
bit in address 00h. However, if it detects the control
byte on the I

2

C™ bus, (Figure 3-2) it will switch to the

in the Bidirectional mode. Once the device has made
the transition to the Bidirectional mode, the only way to
switch the device back to the Transmit-Only mode is to
remove power from the device. The mode transition
process is shown in detail in Figure 3-3.

Once the device has switched into the Bidirectional
mode, the VCLK input is disregarded, with the
exception that a logic high level is required to enable
write capability. This mode supports a two-wire
Bidirectional data transmission protocol (I

2

C™). In this

protocol, a device that sends data on the bus is defined
to be the transmitter, and a device that receives data
from the bus is defined to be the receiver. The bus must
be controlled by a master device that generates the
Bidirectional mode clock (SCL), controls access to the
bus and generates the Start and Stop conditions, while
the 24LC21A acts as the slave. Both master and slave
can operate as transmitter or receiver, but the master
device determines which mode is activated. In the
Bidirectional mode, the 24LC21A only responds to
commands for device ‘1010 000X’.

FIGURE 3-1:

MODE TRANSITION WITH RECOVERY TO TRANSMIT-ONLY MODE

FIGURE 3-2:

SUCCESSFUL MODE TRANSITION TO BIDIRECTIONAL MODE

TVHZ

SCL

SDA

VCLK

Transmit-Only

MODE

Bidirectional

Recovery to Transmit-Only mode

Bit 8

(MSB of data in 00h)

VCLK count =

 1        2       3       4         127   128

Transition mode with possibility to return to Transmit-Only mode

Bidirectional

permanently

SCL

SDA

         VCLK count =      1       2            n       0
VCLK

Transmit-Only

MODE

S

1

0

1

0

0

0

0

0

ACK

n < 128

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 6

© 2008 Microchip Technology Inc.

FIGURE 3-3:

DISPLAY OPERATION PER DDC

 

STANDARD PROPOSED BY VESA

®

Communication

is idle

Is Vsync

present?

No

Send EDID continuously

using Vsync as clock

High-to-Low

transition on

SCL?

No

Yes

Yes

Stop sending EDID.

Switch to DDC2™ mode.

Display has

transition state

?

optional

Set Vsync counter = 0

Change on

VCLK lines?

SCL, SDA or

No

Yes

High-Low

transition on SCL

?

Reset Vsync counter = 0

No

Yes

Valid

received?

DDC2 address

No

No

VCLK 

cycle?

Yes

Increment VCLK counter

Yes

Switch back to DDC1™

mode.

DDC2 communication

idle. Display waiting for

address byte.

DDC2B

address

received?

Yes

Receive DDC2B

command

Respond to DDC2B

command

Is display

Access.bus

TM

Yes

Valid Access.bus

address?

No

Yes

See Access.bus

specification to determine

correct procedure.

Yes

No

Yes

No

No

No

The 24LC21A was designed to

Display Power-on

or

DDC Circuit Powered

from +5 volts

or start timer

Reset counter or timer

(if appropriate)

Counter=128 or

timer expired?

High-to-Low
transition on

SCL?

No

Yes

comply to the portion of flowchart inside dash box

Note 1: The base flowchart is copyright 

© 1993, 1994, 1995 Video Electronic Standard Association (VESA) from

VESA’s Display Data Channel (DDC) Standard Proposal ver. 2p rev. 0, used by permission of VESA.

2: The dash box and text “The 24LC21A and... inside dash box.” are added by Microchip Technology Inc.

3: Vsync signal is normally used to derive a signal for VCLK pin on the 24LC21A.

capable?

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 7

24LC21A

3.1

Bidirectional Mode Bus 
Characteristics

The following bus protocol has been defined:

• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line while the clock line is high will be 
interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been
defined (Figure 3-4).

3.1.1

BUS NOT BUSY (A)

Both data and clock lines remain high.

3.1.2

START DATA TRANSFER (B)

A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.

3.1.3

STOP DATA TRANSFER (C)

A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must be ended with a Stop condition.

3.1.4

DATA VALID (D)

The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.

The data on the line must be changed during the low
period of the clock signal. There is one clock pulse per
bit of data.

Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master device and is
theoretically unlimited, although only the last eight will
be stored when doing a write operation. When an
overwrite does occur it will replace data in a first-in first-
out (FIFO) fashion.

3.1.5

ACKNOWLEDGE

Each receiving device, when addressed, is obliged to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this Acknowledge bit.

The device that acknowledges has to pull down the
SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable low during the high
period of the acknowledge related clock pulse.   Of
course, setup and hold times must be taken into
account. A master must signal an end of data to the
slave by not generating an Acknowledge bit on the last
byte that has been clocked out of the slave. In this
case, the slave must leave the data line high to enable
the master to generate the Stop condition.

FIGURE 3-4:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS

Note:

Once switched into Bidirectional mode, the
24LC21A will remain in that mode until
power is removed. Removing power is the
only way to reset the 24LC21A into the
Transmit-Only mode.

Note:

The 24LC21A does not generate any
Acknowledge bits if an internal
programming cycle is in progress.

(A)

(B)

(D)

(D)

(A)

(C)

Start

Condition

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

SCL

SDA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 8

© 2008 Microchip Technology Inc.

FIGURE 3-5:

BUS TIMING START/STOP

FIGURE 3-6:

BUS TIMING DATA

3.1.6

SLAVE ADDRESS

After generating a Start condition, the bus master
transmits the slave address consisting of a 7-bit device
code (1010000) for the 24LC21A.

The eighth bit of slave address determines whether the
master device wants to read or write to the 24LC21A
(Figure 3-7).

The 24LC21A monitors the bus for its corresponding
slave address continuously. It generates an
Acknowledge bit if the slave address was true and it is
not in a programming mode.

FIGURE 3-7:

CONTROL BYTE 
ALLOCATION

SCL

SDA

Start

Stop

V

HYS

T

SU

:

STO

T

HD

:

STA

T

SU

:

STA

SCL

SDA
IN

SDA
OUT

T

SU

:

STA

T

SP

T

AA

T

F

T

LOW

T

HIGH

T

HD

:

STA

T

HD

:

DAT

T

SU

:

DAT

T

SU

:

STO

T

BUF

T

AA

T

R

Operation

Slave Address

R/W

Read

1010000

1

Write

1010000

0

R/W

A

1

0

1

0

0

0

0

Read/Write

Start

Slave Address

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 9

24LC21A

4.0

WRITE OPERATION

4.1

Byte Write

Following the start signal from the master, the slave
address (four bits), three zero bits (000) and the R/W
bit which is a logic low are placed onto the bus by the
master transmitter. This indicates to the addressed
slave receiver that a byte with a word address will
follow after it has generated an Acknowledge bit during
the ninth clock cycle. Therefore, the next byte
transmitted by the master is the word address and will
be written into the Address Pointer of the 24LC21A.
After receiving another acknowledge signal from the
24LC21A the master device will transmit the data word
to be written into the addressed memory location. The
24LC21A acknowledges again and the master
generates a Stop condition. This initiates the internal
write cycle, and during this time the 24LC21A will not
generate acknowledge signals (Figure 4-1).

It is required that VCLK be held at a logic high level
during command and data transfer in order to program
the device. This applies to both byte write and page
write operation. Note, however, that the VCLK is
ignored during the self-timed program operation.
Changing VCLK from high-to-low during the self-timed
program operation will not halt programming of the
device. 

4.2

Page Write 

The write control byte, word address and the first data
byte are transmitted to the 24LC21A in the same way
as in a byte write. But instead of generating a Stop
condition the master transmits up to eight data bytes to
the 24LC21A which are temporarily stored in the on-
chip page buffer and will be written into the memory
after the master has transmitted a Stop condition. After
the receipt of each word, the three lower order Address
Pointer bits are internally incremented by one. The
higher order five bits of the word address remains
constant. If the master should transmit more than eight
words prior to generating the Stop condition, the
address counter will roll over and the previously
received data will be overwritten. As with the byte write
operation, once the Stop condition is received an
internal write cycle will begin (Figure 4-3).

It is required that VCLK be held at a logic high level
during command and data transfer in order to program
the device. This applies to both byte write and page
write operation. Note, however, that the VCLK is
ignored during the self-timed program operation.
Changing VCLK from high-to-low during the self-timed
program operation will not halt programming of the
device. 

Note:

Page write operations are limited to writing
bytes within a single physical page,
regardless of the number of bytes actually
being written. Physical page boundaries
start at addresses that are integer multi-
ples of the page buffer size (or ‘page size’)
and end at addresses that are integer
multiples of [page size – 1]. If a Page Write
command attempts to write across a
physical page boundary, the result is that
the data wraps around to the beginning of
the current page (overwriting data
previously stored there), instead of being
written to the next page as might be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 10

© 2008 Microchip Technology Inc.

FIGURE 4-1:

BYTE WRITE

FIGURE 4-2:

VCLK WRITE ENABLE TIMING

FIGURE 4-3:

PAGE WRITE

Bus Activity
Master

SDA Line

Bus Activity

Control

Byte

Word

Address

Data

S
T

O

P

S

T

A

R

T

A

C

K

S

P

A
C
K

A
C
K

VCLK

SCL

SDA

IN

VCLK

T

HD

:

STA

T

HD

:

STO

T

VHST

T

SPVL

SDA Line

Control

Byte

Word

Address

S

T

O

P

S

T

A

R

T

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

Data n + 1

Data n + 7

Data (n)

P

S

VCLK

Bus Activity
Master

Bus Activity

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 1

24LC21A

Features:

• Single Supply with Operation Down to 2.5V

• Completely Implements DDC1™/DDC2™ 

Interface for Monitor Identification, Including 
Recovery to DDC1

• Pin and Function Compatible with 24LC21

• Low-Power CMOS Technology

- 1 mA typical active current 

- 10 

μA standby current typical at 5.5V

• 2-Wire Serial Interface Bus, I

2

C™ Compatible 

• 100 kHz (2.5V) and 400 kHz (5V) Compatibility

• Self-Timed Write Cycle (including auto-erase)

• Page Write Buffer for up to Eight Bytes

•  1,000,000 Erase/Write Cycles Ensured

• Data Retention > 200 years

• ESD Protection > 4000V

• 8-pin PDIP and SOIC Package

• Available for Extended Temperature Ranges

• Pb-Free and RoHS Compliant

Description:

The Microchip Technology Inc. 24LC21A is a 128 x 8-bit
dual-mode Electrically Erasable PROM. This device is
designed for use in applications requiring storage and
serial transmission of configuration and control informa-
tion. Two modes of operation have been implemented:
Transmit-Only mode and Bidirectional mode. Upon
power-up, the device will be in the Transmit-Only mode,
sending a serial bit stream of the memory array from 00h
to 7Fh, clocked by the VCLK pin. A valid high-to-low
transition on the SCL pin will cause the device to enter
the transition mode, and look for a valid control byte on
the I

2

C bus. If it detects a valid control byte from the

master, it will switch into Bidirectional mode, with byte
selectable read/write capability of the memory array
using SCL. If no control byte is received, the device will
revert to the Transmit-Only mode after it receives 128
consecutive VCLK pulses while the SCL pin is idle. The
24LC21A is available in a standard 8-pin PDIP and
SOIC package in industrial temperature range.

Package Types

Block Diagram

Pin Function Table

- Industrial (I):

-40°C to

+85°C

Name

Function

V

SS

Ground

SDA

Serial Address/Data I/O

SCL

Serial Clock (Bidirectional mode)

VCLK

Serial Clock (Transmit-Only mode)

V

CC

+2.5V to 5.5V Power Supply

NC

No Connection

PDIP

SOIC

24

LC

21

A

NC

NC

NC

V

SS

1

2

3

4

8

7

6

5

Vcc

VCLK

SCL

SDA

24L

C

21A

NC

NC

NC

Vss

1

2

3

4

8

7

6

5

Vcc

VCLK

SCL

SDA

I/O

Control

Logic

HV Generator

EEPROM 

Array

Page Latches

YDEC

XDEC

Sense AMP

R/W Control

Memory

Control

Logic

SDA

SCL

V

CC

V

SS

VCLK

1K 2.5V Dual Mode I

2

C

 Serial EEPROM

DDC is a trademark of the Video Electronics Standards
Association.
I

2

C is a trademark of Philips Corporation.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 2

© 2008 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

()

V

CC

.............................................................................................................................................................................7.0V

All inputs and outputs w.r.t. V

SS

.........................................................................................................................................-

0.6V to V

CC

 +1.0V

Storage temperature ...............................................................................................................................-65

°C to +150°C

Ambient temperature with power applied ................................................................................................-40

°C to +125°C

ESD protection on all pins

......................................................................................................................................................≥ 4 kV

TABLE 1-1:

DC CHARACTERISTICS

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at those or any other conditions
above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

V

CC

 = +2.5V to 5.5V

Industrial (I): 

T

A

 =-40

°C to +85°C

Parameter

Symbol

Min.

Max.

Units

Conditions

SCL and SDA pins:

High-level input voltage
Low-level input voltage

V

IH

V

IL

0.7 V

CC

0.3 V

CC

V
V

Input levels on VCLK pin:

High-level input voltage
Low-level input voltage

V

IH

V

IL

2.0

0.2 V

CC

V
V

V

CC

 

≥ 2.7V (Note)

V

CC

 < 2.7V (Note)

Hysteresis of Schmitt Trigger inputs

 V

HYS

.05 V

CC

V

(Note)

Low-level output voltage

V

OL

1

0.4

V

I

OL

 = 3 mA, V

CC

 = 2.5V (Note)

Low-level output voltage

V

OL

2

0.6

V

I

OL

 = 6 mA, V

CC

 = 2.5V

Input leakage current

I

LI

±1

μA

V

IN

 = 0.1V to V

CC

Output leakage current

I

LO

±1

μA

V

OUT

 = 0.1V to V

CC

Pin capacitance (all inputs/outputs)

C

IN

, C

OUT

10

pF

V

CC

 = 5.0V (Note)

T

A

 = 25

°C, F

CLK

 = 1 MHz

Operating current

I

CC

 Write

I

CC

 Read


3
1

mA
mA

V

CC

 = 5.5V

V

CC

 = 5.5V, SCL = 400 kHz

Standby current

I

CCS


30

100

μA
μA

V

CC

 = 3.0V, SDA = SCL = V

CC

V

CC

 = 5.5V, SDA = SCL = V

CC

V

CLK

 = V

SS

Note:

This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 3

24LC21A

TABLE 1-2:

AC CHARACTERISTICS

Parameter

Symbol

Vcc = 2.5-5.5V

Standard Mode

Vcc = 4.5 - 5.5V

Fast Mode

Units

Remarks

Min.

Max.

Min.

Max.

Clock frequency

F

CLK

100

400

kHz

Clock high time

T

HIGH

4000

600

ns

Clock low time

T

LOW

4700

1300

ns

SDA and SCL rise time

T

R

1000

300

ns

(Note 1)

SDA and SCL fall time

T

F

300

300

ns

(Note 1)

Start condition hold time

T

HD

:

STA

4000

600

ns

After this period the first clock 
pulse is generated

Start condition setup time

T

SU

:

STA

4700

600

ns

Only relevant for repeated 
Start condition

Data input hold time

T

HD

:

DAT

0

0

ns

(Note 2)

Data input setup time

T

SU

:

DAT

250

100

ns

Stop condition setup time

T

SU

:

STO

4000

600

ns

Output valid from clock

T

AA

3500

900

ns

(Note 2)

Bus free time

T

BUF

4700

1300

ns

Time the bus must be free 
before a new transmission 
can start

Output fall time from V

IH

 

minimum to V

IL

 maximum

T

OF

250

20 + 0.1 

C

B

250

ns

(Note 1), C

B

 

≤ 100 pF

Input filter spike suppres-
sion (SDA and SCL pins)

T

SP

50

50

ns

(Note 3)

Write cycle time

T

WR

10

10

ms

Byte or Page mode

Transmit-Only Mode Parameters

Output valid from VCLK

T

VAA

2000

1000

ns

VCLK high time

T

VHIGH

4000

600

ns

VCLK low time

T

VLOW

4700

1300

ns

VCLK setup time

T

VHST

0

0

ns

VCLK hold time

T

SPVL

4000

600

ns

Mode transition time

T

VHZ

1000

500

ns

Transmit-only power-up 
time

T

VPU

0

0

ns

Input filter spike suppres-
sion (VCLK pin)

T

SPV

100

100

ns

Endurance

1M

1M

cycles

25°C, Vcc = 5.0V, Block 
mode (Note 4)

Note 1:

Not 100% tested. C

B

 = Total capacitance of one bus line in pF.

2:

As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region 
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3:

The combined T

SP

 and V

HYS

 specifications are due to Schmitt Trigger inputs which provide noise and 

spike suppression. This eliminates the need for a T

I

 specification for standard operation.

4:

This parameter is not tested but ensured by characterization. For endurance estimates in a specific 
application, please consult the Total Endurance™ Model which can be obtained from Microchip’s web site 
at www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 4

© 2008 Microchip Technology Inc.

2.0

FUNCTIONAL DESCRIPTION

The 24LC21A is designed to comply to the DDC
Standard proposed by VESA (Figure 3-3) with the
exception that it is not Access.bus capable. It operates
in two modes, the Transmit-Only mode and the
Bidirectional mode. There is a separate 2-wire protocol
to support each mode, each having a separate clock
input but sharing a common data line (SDA). The
device enters the Transmit-Only mode upon power-up.
In this mode, the device transmits data bits on the SDA
pin in response to a clock signal on the VCLK pin. The
device will remain in this mode until a valid high-to-low
transition is placed on the SCL input. When a valid
transition on SCL is recognized, the device will switch
into the Bidirectional mode and look for its control byte
to be sent by the master. If it detects its control byte, it
will stay in the Bidirectional mode. Otherwise, it will
revert to the Transmit-Only mode after it sees 128
VCLK pulses.

2.1

Transmit-Only Mode

The device will power-up in the Transmit-Only mode at
address 00h. This mode supports a unidirectional
2-wire protocol for continuous transmission of the
contents of the memory array. This device requires that

it be initialized prior to valid data being sent in the
Transmit-Only mode (Section 2.2 “Initialization Pro-
cedure”
).   In this mode, data is transmitted on the SDA
pin in 8-bit bytes, with each byte followed by a ninth,
null bit (Figure 2-1). The clock source for the Transmit-
Only mode is provided on the VCLK pin, and a data bit
is output on the rising edge on this pin. The eight bits in
each byte are transmitted Most Significant bit first.
Each byte within the memory array will be output in
sequence. After address 7Fh in the memory array is
transmitted, the internal Address Pointers will wrap
around to the first memory location (00h) and continue.
The Bidirectional mode Clock (SCL) pin must be held
high for the device to remain in the Transmit-Only
mode. 

2.2

Initialization Procedure

After V

CC

 has stabilized, the device will be in the Trans-

mit-Only mode. Nine clock cycles on the VCLK pin
must be given to the device for it to perform internal
sychronization. During this period, the SDA pin will be
in a high-impedance state. On the rising edge of the
tenth clock cycle, the device will output the first valid
data bit which will be the Most Significant bit in address
00h. (Figure 2-2). 

FIGURE 2-1:

TRANSMIT-ONLY MODE

FIGURE 2-2:

DEVICE INITIALIZATION

SCL

SDA

VCLK

Tvaa

Tvaa

Bit 1 (LSB)

Null Bit

Bit 1 (MSB)

Bit 7

Tvlow

Tvhigh

Tvaa

Tvaa

Bit 8

Bit 7

High-Impedance for 9 Clock Cycles

Tvpu

1

2

8

9

10

11

SCL

SDA

VCLK

Vcc

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 5

24LC21A

3.0

BIDIRECTIONAL MODE

Before the 24LC21A can be switched into the
Bidirectional mode (Figure 3-1), it must enter the
Transition mode, which is done by applying a valid
high-to-low transition on the Bidirectional mode clock
(SCL). As soon it enters the Transition mode, it looks
for a control byte ‘1010 000X’ on the I

2

C™ bus, and

starts to count pulses on VCLK. Any high-to-low transi-
tion on the SCL line will reset the count. If it sees a
pulse count of 128 on VCLK while the SCL line is idle,
it will revert back to the Transmit-Only mode, and
transmit its contents starting with the Most Significant
bit in address 00h. However, if it detects the control
byte on the I

2

C™ bus, (Figure 3-2) it will switch to the

in the Bidirectional mode. Once the device has made
the transition to the Bidirectional mode, the only way to
switch the device back to the Transmit-Only mode is to
remove power from the device. The mode transition
process is shown in detail in Figure 3-3.

Once the device has switched into the Bidirectional
mode, the VCLK input is disregarded, with the
exception that a logic high level is required to enable
write capability. This mode supports a two-wire
Bidirectional data transmission protocol (I

2

C™). In this

protocol, a device that sends data on the bus is defined
to be the transmitter, and a device that receives data
from the bus is defined to be the receiver. The bus must
be controlled by a master device that generates the
Bidirectional mode clock (SCL), controls access to the
bus and generates the Start and Stop conditions, while
the 24LC21A acts as the slave. Both master and slave
can operate as transmitter or receiver, but the master
device determines which mode is activated. In the
Bidirectional mode, the 24LC21A only responds to
commands for device ‘1010 000X’.

FIGURE 3-1:

MODE TRANSITION WITH RECOVERY TO TRANSMIT-ONLY MODE

FIGURE 3-2:

SUCCESSFUL MODE TRANSITION TO BIDIRECTIONAL MODE

TVHZ

SCL

SDA

VCLK

Transmit-Only

MODE

Bidirectional

Recovery to Transmit-Only mode

Bit 8

(MSB of data in 00h)

VCLK count =

 1        2       3       4         127   128

Transition mode with possibility to return to Transmit-Only mode

Bidirectional

permanently

SCL

SDA

         VCLK count =      1       2            n       0
VCLK

Transmit-Only

MODE

S

1

0

1

0

0

0

0

0

ACK

n < 128

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 6

© 2008 Microchip Technology Inc.

FIGURE 3-3:

DISPLAY OPERATION PER DDC

 

STANDARD PROPOSED BY VESA

®

Communication

is idle

Is Vsync

present?

No

Send EDID continuously

using Vsync as clock

High-to-Low

transition on

SCL?

No

Yes

Yes

Stop sending EDID.

Switch to DDC2™ mode.

Display has

transition state

?

optional

Set Vsync counter = 0

Change on

VCLK lines?

SCL, SDA or

No

Yes

High-Low

transition on SCL

?

Reset Vsync counter = 0

No

Yes

Valid

received?

DDC2 address

No

No

VCLK 

cycle?

Yes

Increment VCLK counter

Yes

Switch back to DDC1™

mode.

DDC2 communication

idle. Display waiting for

address byte.

DDC2B

address

received?

Yes

Receive DDC2B

command

Respond to DDC2B

command

Is display

Access.bus

TM

Yes

Valid Access.bus

address?

No

Yes

See Access.bus

specification to determine

correct procedure.

Yes

No

Yes

No

No

No

The 24LC21A was designed to

Display Power-on

or

DDC Circuit Powered

from +5 volts

or start timer

Reset counter or timer

(if appropriate)

Counter=128 or

timer expired?

High-to-Low
transition on

SCL?

No

Yes

comply to the portion of flowchart inside dash box

Note 1: The base flowchart is copyright 

© 1993, 1994, 1995 Video Electronic Standard Association (VESA) from

VESA’s Display Data Channel (DDC) Standard Proposal ver. 2p rev. 0, used by permission of VESA.

2: The dash box and text “The 24LC21A and... inside dash box.” are added by Microchip Technology Inc.

3: Vsync signal is normally used to derive a signal for VCLK pin on the 24LC21A.

capable?

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 7

24LC21A

3.1

Bidirectional Mode Bus 
Characteristics

The following bus protocol has been defined:

• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line while the clock line is high will be 
interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been
defined (Figure 3-4).

3.1.1

BUS NOT BUSY (A)

Both data and clock lines remain high.

3.1.2

START DATA TRANSFER (B)

A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.

3.1.3

STOP DATA TRANSFER (C)

A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must be ended with a Stop condition.

3.1.4

DATA VALID (D)

The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.

The data on the line must be changed during the low
period of the clock signal. There is one clock pulse per
bit of data.

Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master device and is
theoretically unlimited, although only the last eight will
be stored when doing a write operation. When an
overwrite does occur it will replace data in a first-in first-
out (FIFO) fashion.

3.1.5

ACKNOWLEDGE

Each receiving device, when addressed, is obliged to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this Acknowledge bit.

The device that acknowledges has to pull down the
SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable low during the high
period of the acknowledge related clock pulse.   Of
course, setup and hold times must be taken into
account. A master must signal an end of data to the
slave by not generating an Acknowledge bit on the last
byte that has been clocked out of the slave. In this
case, the slave must leave the data line high to enable
the master to generate the Stop condition.

FIGURE 3-4:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS

Note:

Once switched into Bidirectional mode, the
24LC21A will remain in that mode until
power is removed. Removing power is the
only way to reset the 24LC21A into the
Transmit-Only mode.

Note:

The 24LC21A does not generate any
Acknowledge bits if an internal
programming cycle is in progress.

(A)

(B)

(D)

(D)

(A)

(C)

Start

Condition

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

SCL

SDA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 8

© 2008 Microchip Technology Inc.

FIGURE 3-5:

BUS TIMING START/STOP

FIGURE 3-6:

BUS TIMING DATA

3.1.6

SLAVE ADDRESS

After generating a Start condition, the bus master
transmits the slave address consisting of a 7-bit device
code (1010000) for the 24LC21A.

The eighth bit of slave address determines whether the
master device wants to read or write to the 24LC21A
(Figure 3-7).

The 24LC21A monitors the bus for its corresponding
slave address continuously. It generates an
Acknowledge bit if the slave address was true and it is
not in a programming mode.

FIGURE 3-7:

CONTROL BYTE 
ALLOCATION

SCL

SDA

Start

Stop

V

HYS

T

SU

:

STO

T

HD

:

STA

T

SU

:

STA

SCL

SDA
IN

SDA
OUT

T

SU

:

STA

T

SP

T

AA

T

F

T

LOW

T

HIGH

T

HD

:

STA

T

HD

:

DAT

T

SU

:

DAT

T

SU

:

STO

T

BUF

T

AA

T

R

Operation

Slave Address

R/W

Read

1010000

1

Write

1010000

0

R/W

A

1

0

1

0

0

0

0

Read/Write

Start

Slave Address

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 9

24LC21A

4.0

WRITE OPERATION

4.1

Byte Write

Following the start signal from the master, the slave
address (four bits), three zero bits (000) and the R/W
bit which is a logic low are placed onto the bus by the
master transmitter. This indicates to the addressed
slave receiver that a byte with a word address will
follow after it has generated an Acknowledge bit during
the ninth clock cycle. Therefore, the next byte
transmitted by the master is the word address and will
be written into the Address Pointer of the 24LC21A.
After receiving another acknowledge signal from the
24LC21A the master device will transmit the data word
to be written into the addressed memory location. The
24LC21A acknowledges again and the master
generates a Stop condition. This initiates the internal
write cycle, and during this time the 24LC21A will not
generate acknowledge signals (Figure 4-1).

It is required that VCLK be held at a logic high level
during command and data transfer in order to program
the device. This applies to both byte write and page
write operation. Note, however, that the VCLK is
ignored during the self-timed program operation.
Changing VCLK from high-to-low during the self-timed
program operation will not halt programming of the
device. 

4.2

Page Write 

The write control byte, word address and the first data
byte are transmitted to the 24LC21A in the same way
as in a byte write. But instead of generating a Stop
condition the master transmits up to eight data bytes to
the 24LC21A which are temporarily stored in the on-
chip page buffer and will be written into the memory
after the master has transmitted a Stop condition. After
the receipt of each word, the three lower order Address
Pointer bits are internally incremented by one. The
higher order five bits of the word address remains
constant. If the master should transmit more than eight
words prior to generating the Stop condition, the
address counter will roll over and the previously
received data will be overwritten. As with the byte write
operation, once the Stop condition is received an
internal write cycle will begin (Figure 4-3).

It is required that VCLK be held at a logic high level
during command and data transfer in order to program
the device. This applies to both byte write and page
write operation. Note, however, that the VCLK is
ignored during the self-timed program operation.
Changing VCLK from high-to-low during the self-timed
program operation will not halt programming of the
device. 

Note:

Page write operations are limited to writing
bytes within a single physical page,
regardless of the number of bytes actually
being written. Physical page boundaries
start at addresses that are integer multi-
ples of the page buffer size (or ‘page size’)
and end at addresses that are integer
multiples of [page size – 1]. If a Page Write
command attempts to write across a
physical page boundary, the result is that
the data wraps around to the beginning of
the current page (overwriting data
previously stored there), instead of being
written to the next page as might be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 10

© 2008 Microchip Technology Inc.

FIGURE 4-1:

BYTE WRITE

FIGURE 4-2:

VCLK WRITE ENABLE TIMING

FIGURE 4-3:

PAGE WRITE

Bus Activity
Master

SDA Line

Bus Activity

Control

Byte

Word

Address

Data

S
T

O

P

S

T

A

R

T

A

C

K

S

P

A
C
K

A
C
K

VCLK

SCL

SDA

IN

VCLK

T

HD

:

STA

T

HD

:

STO

T

VHST

T

SPVL

SDA Line

Control

Byte

Word

Address

S

T

O

P

S

T

A

R

T

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

Data n + 1

Data n + 7

Data (n)

P

S

VCLK

Bus Activity
Master

Bus Activity

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 1

24LC21A

Features:

• Single Supply with Operation Down to 2.5V

• Completely Implements DDC1™/DDC2™ 

Interface for Monitor Identification, Including 
Recovery to DDC1

• Pin and Function Compatible with 24LC21

• Low-Power CMOS Technology

- 1 mA typical active current 

- 10 

μA standby current typical at 5.5V

• 2-Wire Serial Interface Bus, I

2

C™ Compatible 

• 100 kHz (2.5V) and 400 kHz (5V) Compatibility

• Self-Timed Write Cycle (including auto-erase)

• Page Write Buffer for up to Eight Bytes

•  1,000,000 Erase/Write Cycles Ensured

• Data Retention > 200 years

• ESD Protection > 4000V

• 8-pin PDIP and SOIC Package

• Available for Extended Temperature Ranges

• Pb-Free and RoHS Compliant

Description:

The Microchip Technology Inc. 24LC21A is a 128 x 8-bit
dual-mode Electrically Erasable PROM. This device is
designed for use in applications requiring storage and
serial transmission of configuration and control informa-
tion. Two modes of operation have been implemented:
Transmit-Only mode and Bidirectional mode. Upon
power-up, the device will be in the Transmit-Only mode,
sending a serial bit stream of the memory array from 00h
to 7Fh, clocked by the VCLK pin. A valid high-to-low
transition on the SCL pin will cause the device to enter
the transition mode, and look for a valid control byte on
the I

2

C bus. If it detects a valid control byte from the

master, it will switch into Bidirectional mode, with byte
selectable read/write capability of the memory array
using SCL. If no control byte is received, the device will
revert to the Transmit-Only mode after it receives 128
consecutive VCLK pulses while the SCL pin is idle. The
24LC21A is available in a standard 8-pin PDIP and
SOIC package in industrial temperature range.

Package Types

Block Diagram

Pin Function Table

- Industrial (I):

-40°C to

+85°C

Name

Function

V

SS

Ground

SDA

Serial Address/Data I/O

SCL

Serial Clock (Bidirectional mode)

VCLK

Serial Clock (Transmit-Only mode)

V

CC

+2.5V to 5.5V Power Supply

NC

No Connection

PDIP

SOIC

24

LC

21

A

NC

NC

NC

V

SS

1

2

3

4

8

7

6

5

Vcc

VCLK

SCL

SDA

24L

C

21A

NC

NC

NC

Vss

1

2

3

4

8

7

6

5

Vcc

VCLK

SCL

SDA

I/O

Control

Logic

HV Generator

EEPROM 

Array

Page Latches

YDEC

XDEC

Sense AMP

R/W Control

Memory

Control

Logic

SDA

SCL

V

CC

V

SS

VCLK

1K 2.5V Dual Mode I

2

C

 Serial EEPROM

DDC is a trademark of the Video Electronics Standards
Association.
I

2

C is a trademark of Philips Corporation.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 2

© 2008 Microchip Technology Inc.

1.0

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

()

V

CC

.............................................................................................................................................................................7.0V

All inputs and outputs w.r.t. V

SS

.........................................................................................................................................-

0.6V to V

CC

 +1.0V

Storage temperature ...............................................................................................................................-65

°C to +150°C

Ambient temperature with power applied ................................................................................................-40

°C to +125°C

ESD protection on all pins

......................................................................................................................................................≥ 4 kV

TABLE 1-1:

DC CHARACTERISTICS

† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at those or any other conditions
above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

V

CC

 = +2.5V to 5.5V

Industrial (I): 

T

A

 =-40

°C to +85°C

Parameter

Symbol

Min.

Max.

Units

Conditions

SCL and SDA pins:

High-level input voltage
Low-level input voltage

V

IH

V

IL

0.7 V

CC

0.3 V

CC

V
V

Input levels on VCLK pin:

High-level input voltage
Low-level input voltage

V

IH

V

IL

2.0

0.2 V

CC

V
V

V

CC

 

≥ 2.7V (Note)

V

CC

 < 2.7V (Note)

Hysteresis of Schmitt Trigger inputs

 V

HYS

.05 V

CC

V

(Note)

Low-level output voltage

V

OL

1

0.4

V

I

OL

 = 3 mA, V

CC

 = 2.5V (Note)

Low-level output voltage

V

OL

2

0.6

V

I

OL

 = 6 mA, V

CC

 = 2.5V

Input leakage current

I

LI

±1

μA

V

IN

 = 0.1V to V

CC

Output leakage current

I

LO

±1

μA

V

OUT

 = 0.1V to V

CC

Pin capacitance (all inputs/outputs)

C

IN

, C

OUT

10

pF

V

CC

 = 5.0V (Note)

T

A

 = 25

°C, F

CLK

 = 1 MHz

Operating current

I

CC

 Write

I

CC

 Read


3
1

mA
mA

V

CC

 = 5.5V

V

CC

 = 5.5V, SCL = 400 kHz

Standby current

I

CCS


30

100

μA
μA

V

CC

 = 3.0V, SDA = SCL = V

CC

V

CC

 = 5.5V, SDA = SCL = V

CC

V

CLK

 = V

SS

Note:

This parameter is periodically sampled and not 100% tested.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 3

24LC21A

TABLE 1-2:

AC CHARACTERISTICS

Parameter

Symbol

Vcc = 2.5-5.5V

Standard Mode

Vcc = 4.5 - 5.5V

Fast Mode

Units

Remarks

Min.

Max.

Min.

Max.

Clock frequency

F

CLK

100

400

kHz

Clock high time

T

HIGH

4000

600

ns

Clock low time

T

LOW

4700

1300

ns

SDA and SCL rise time

T

R

1000

300

ns

(Note 1)

SDA and SCL fall time

T

F

300

300

ns

(Note 1)

Start condition hold time

T

HD

:

STA

4000

600

ns

After this period the first clock 
pulse is generated

Start condition setup time

T

SU

:

STA

4700

600

ns

Only relevant for repeated 
Start condition

Data input hold time

T

HD

:

DAT

0

0

ns

(Note 2)

Data input setup time

T

SU

:

DAT

250

100

ns

Stop condition setup time

T

SU

:

STO

4000

600

ns

Output valid from clock

T

AA

3500

900

ns

(Note 2)

Bus free time

T

BUF

4700

1300

ns

Time the bus must be free 
before a new transmission 
can start

Output fall time from V

IH

 

minimum to V

IL

 maximum

T

OF

250

20 + 0.1 

C

B

250

ns

(Note 1), C

B

 

≤ 100 pF

Input filter spike suppres-
sion (SDA and SCL pins)

T

SP

50

50

ns

(Note 3)

Write cycle time

T

WR

10

10

ms

Byte or Page mode

Transmit-Only Mode Parameters

Output valid from VCLK

T

VAA

2000

1000

ns

VCLK high time

T

VHIGH

4000

600

ns

VCLK low time

T

VLOW

4700

1300

ns

VCLK setup time

T

VHST

0

0

ns

VCLK hold time

T

SPVL

4000

600

ns

Mode transition time

T

VHZ

1000

500

ns

Transmit-only power-up 
time

T

VPU

0

0

ns

Input filter spike suppres-
sion (VCLK pin)

T

SPV

100

100

ns

Endurance

1M

1M

cycles

25°C, Vcc = 5.0V, Block 
mode (Note 4)

Note 1:

Not 100% tested. C

B

 = Total capacitance of one bus line in pF.

2:

As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region 
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

3:

The combined T

SP

 and V

HYS

 specifications are due to Schmitt Trigger inputs which provide noise and 

spike suppression. This eliminates the need for a T

I

 specification for standard operation.

4:

This parameter is not tested but ensured by characterization. For endurance estimates in a specific 
application, please consult the Total Endurance™ Model which can be obtained from Microchip’s web site 
at www.microchip.com.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 4

© 2008 Microchip Technology Inc.

2.0

FUNCTIONAL DESCRIPTION

The 24LC21A is designed to comply to the DDC
Standard proposed by VESA (Figure 3-3) with the
exception that it is not Access.bus capable. It operates
in two modes, the Transmit-Only mode and the
Bidirectional mode. There is a separate 2-wire protocol
to support each mode, each having a separate clock
input but sharing a common data line (SDA). The
device enters the Transmit-Only mode upon power-up.
In this mode, the device transmits data bits on the SDA
pin in response to a clock signal on the VCLK pin. The
device will remain in this mode until a valid high-to-low
transition is placed on the SCL input. When a valid
transition on SCL is recognized, the device will switch
into the Bidirectional mode and look for its control byte
to be sent by the master. If it detects its control byte, it
will stay in the Bidirectional mode. Otherwise, it will
revert to the Transmit-Only mode after it sees 128
VCLK pulses.

2.1

Transmit-Only Mode

The device will power-up in the Transmit-Only mode at
address 00h. This mode supports a unidirectional
2-wire protocol for continuous transmission of the
contents of the memory array. This device requires that

it be initialized prior to valid data being sent in the
Transmit-Only mode (Section 2.2 “Initialization Pro-
cedure”
).   In this mode, data is transmitted on the SDA
pin in 8-bit bytes, with each byte followed by a ninth,
null bit (Figure 2-1). The clock source for the Transmit-
Only mode is provided on the VCLK pin, and a data bit
is output on the rising edge on this pin. The eight bits in
each byte are transmitted Most Significant bit first.
Each byte within the memory array will be output in
sequence. After address 7Fh in the memory array is
transmitted, the internal Address Pointers will wrap
around to the first memory location (00h) and continue.
The Bidirectional mode Clock (SCL) pin must be held
high for the device to remain in the Transmit-Only
mode. 

2.2

Initialization Procedure

After V

CC

 has stabilized, the device will be in the Trans-

mit-Only mode. Nine clock cycles on the VCLK pin
must be given to the device for it to perform internal
sychronization. During this period, the SDA pin will be
in a high-impedance state. On the rising edge of the
tenth clock cycle, the device will output the first valid
data bit which will be the Most Significant bit in address
00h. (Figure 2-2). 

FIGURE 2-1:

TRANSMIT-ONLY MODE

FIGURE 2-2:

DEVICE INITIALIZATION

SCL

SDA

VCLK

Tvaa

Tvaa

Bit 1 (LSB)

Null Bit

Bit 1 (MSB)

Bit 7

Tvlow

Tvhigh

Tvaa

Tvaa

Bit 8

Bit 7

High-Impedance for 9 Clock Cycles

Tvpu

1

2

8

9

10

11

SCL

SDA

VCLK

Vcc

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 5

24LC21A

3.0

BIDIRECTIONAL MODE

Before the 24LC21A can be switched into the
Bidirectional mode (Figure 3-1), it must enter the
Transition mode, which is done by applying a valid
high-to-low transition on the Bidirectional mode clock
(SCL). As soon it enters the Transition mode, it looks
for a control byte ‘1010 000X’ on the I

2

C™ bus, and

starts to count pulses on VCLK. Any high-to-low transi-
tion on the SCL line will reset the count. If it sees a
pulse count of 128 on VCLK while the SCL line is idle,
it will revert back to the Transmit-Only mode, and
transmit its contents starting with the Most Significant
bit in address 00h. However, if it detects the control
byte on the I

2

C™ bus, (Figure 3-2) it will switch to the

in the Bidirectional mode. Once the device has made
the transition to the Bidirectional mode, the only way to
switch the device back to the Transmit-Only mode is to
remove power from the device. The mode transition
process is shown in detail in Figure 3-3.

Once the device has switched into the Bidirectional
mode, the VCLK input is disregarded, with the
exception that a logic high level is required to enable
write capability. This mode supports a two-wire
Bidirectional data transmission protocol (I

2

C™). In this

protocol, a device that sends data on the bus is defined
to be the transmitter, and a device that receives data
from the bus is defined to be the receiver. The bus must
be controlled by a master device that generates the
Bidirectional mode clock (SCL), controls access to the
bus and generates the Start and Stop conditions, while
the 24LC21A acts as the slave. Both master and slave
can operate as transmitter or receiver, but the master
device determines which mode is activated. In the
Bidirectional mode, the 24LC21A only responds to
commands for device ‘1010 000X’.

FIGURE 3-1:

MODE TRANSITION WITH RECOVERY TO TRANSMIT-ONLY MODE

FIGURE 3-2:

SUCCESSFUL MODE TRANSITION TO BIDIRECTIONAL MODE

TVHZ

SCL

SDA

VCLK

Transmit-Only

MODE

Bidirectional

Recovery to Transmit-Only mode

Bit 8

(MSB of data in 00h)

VCLK count =

 1        2       3       4         127   128

Transition mode with possibility to return to Transmit-Only mode

Bidirectional

permanently

SCL

SDA

         VCLK count =      1       2            n       0
VCLK

Transmit-Only

MODE

S

1

0

1

0

0

0

0

0

ACK

n < 128

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 6

© 2008 Microchip Technology Inc.

FIGURE 3-3:

DISPLAY OPERATION PER DDC

 

STANDARD PROPOSED BY VESA

®

Communication

is idle

Is Vsync

present?

No

Send EDID continuously

using Vsync as clock

High-to-Low

transition on

SCL?

No

Yes

Yes

Stop sending EDID.

Switch to DDC2™ mode.

Display has

transition state

?

optional

Set Vsync counter = 0

Change on

VCLK lines?

SCL, SDA or

No

Yes

High-Low

transition on SCL

?

Reset Vsync counter = 0

No

Yes

Valid

received?

DDC2 address

No

No

VCLK 

cycle?

Yes

Increment VCLK counter

Yes

Switch back to DDC1™

mode.

DDC2 communication

idle. Display waiting for

address byte.

DDC2B

address

received?

Yes

Receive DDC2B

command

Respond to DDC2B

command

Is display

Access.bus

TM

Yes

Valid Access.bus

address?

No

Yes

See Access.bus

specification to determine

correct procedure.

Yes

No

Yes

No

No

No

The 24LC21A was designed to

Display Power-on

or

DDC Circuit Powered

from +5 volts

or start timer

Reset counter or timer

(if appropriate)

Counter=128 or

timer expired?

High-to-Low
transition on

SCL?

No

Yes

comply to the portion of flowchart inside dash box

Note 1: The base flowchart is copyright 

© 1993, 1994, 1995 Video Electronic Standard Association (VESA) from

VESA’s Display Data Channel (DDC) Standard Proposal ver. 2p rev. 0, used by permission of VESA.

2: The dash box and text “The 24LC21A and... inside dash box.” are added by Microchip Technology Inc.

3: Vsync signal is normally used to derive a signal for VCLK pin on the 24LC21A.

capable?

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 7

24LC21A

3.1

Bidirectional Mode Bus 
Characteristics

The following bus protocol has been defined:

• Data transfer may be initiated only when the bus 

is not busy.

• During data transfer, the data line must remain 

stable whenever the clock line is high. Changes in 
the data line while the clock line is high will be 
interpreted as a Start or Stop condition.

Accordingly, the following bus conditions have been
defined (Figure 3-4).

3.1.1

BUS NOT BUSY (A)

Both data and clock lines remain high.

3.1.2

START DATA TRANSFER (B)

A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.

3.1.3

STOP DATA TRANSFER (C)

A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must be ended with a Stop condition.

3.1.4

DATA VALID (D)

The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.

The data on the line must be changed during the low
period of the clock signal. There is one clock pulse per
bit of data.

Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master device and is
theoretically unlimited, although only the last eight will
be stored when doing a write operation. When an
overwrite does occur it will replace data in a first-in first-
out (FIFO) fashion.

3.1.5

ACKNOWLEDGE

Each receiving device, when addressed, is obliged to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this Acknowledge bit.

The device that acknowledges has to pull down the
SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable low during the high
period of the acknowledge related clock pulse.   Of
course, setup and hold times must be taken into
account. A master must signal an end of data to the
slave by not generating an Acknowledge bit on the last
byte that has been clocked out of the slave. In this
case, the slave must leave the data line high to enable
the master to generate the Stop condition.

FIGURE 3-4:

DATA TRANSFER SEQUENCE ON THE SERIAL BUS

Note:

Once switched into Bidirectional mode, the
24LC21A will remain in that mode until
power is removed. Removing power is the
only way to reset the 24LC21A into the
Transmit-Only mode.

Note:

The 24LC21A does not generate any
Acknowledge bits if an internal
programming cycle is in progress.

(A)

(B)

(D)

(D)

(A)

(C)

Start

Condition

Address or

Acknowledge

Valid

Data

Allowed

to Change

Stop

Condition

SCL

SDA

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 8

© 2008 Microchip Technology Inc.

FIGURE 3-5:

BUS TIMING START/STOP

FIGURE 3-6:

BUS TIMING DATA

3.1.6

SLAVE ADDRESS

After generating a Start condition, the bus master
transmits the slave address consisting of a 7-bit device
code (1010000) for the 24LC21A.

The eighth bit of slave address determines whether the
master device wants to read or write to the 24LC21A
(Figure 3-7).

The 24LC21A monitors the bus for its corresponding
slave address continuously. It generates an
Acknowledge bit if the slave address was true and it is
not in a programming mode.

FIGURE 3-7:

CONTROL BYTE 
ALLOCATION

SCL

SDA

Start

Stop

V

HYS

T

SU

:

STO

T

HD

:

STA

T

SU

:

STA

SCL

SDA
IN

SDA
OUT

T

SU

:

STA

T

SP

T

AA

T

F

T

LOW

T

HIGH

T

HD

:

STA

T

HD

:

DAT

T

SU

:

DAT

T

SU

:

STO

T

BUF

T

AA

T

R

Operation

Slave Address

R/W

Read

1010000

1

Write

1010000

0

R/W

A

1

0

1

0

0

0

0

Read/Write

Start

Slave Address

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

© 2008 Microchip Technology Inc.

DS21160G-page 9

24LC21A

4.0

WRITE OPERATION

4.1

Byte Write

Following the start signal from the master, the slave
address (four bits), three zero bits (000) and the R/W
bit which is a logic low are placed onto the bus by the
master transmitter. This indicates to the addressed
slave receiver that a byte with a word address will
follow after it has generated an Acknowledge bit during
the ninth clock cycle. Therefore, the next byte
transmitted by the master is the word address and will
be written into the Address Pointer of the 24LC21A.
After receiving another acknowledge signal from the
24LC21A the master device will transmit the data word
to be written into the addressed memory location. The
24LC21A acknowledges again and the master
generates a Stop condition. This initiates the internal
write cycle, and during this time the 24LC21A will not
generate acknowledge signals (Figure 4-1).

It is required that VCLK be held at a logic high level
during command and data transfer in order to program
the device. This applies to both byte write and page
write operation. Note, however, that the VCLK is
ignored during the self-timed program operation.
Changing VCLK from high-to-low during the self-timed
program operation will not halt programming of the
device. 

4.2

Page Write 

The write control byte, word address and the first data
byte are transmitted to the 24LC21A in the same way
as in a byte write. But instead of generating a Stop
condition the master transmits up to eight data bytes to
the 24LC21A which are temporarily stored in the on-
chip page buffer and will be written into the memory
after the master has transmitted a Stop condition. After
the receipt of each word, the three lower order Address
Pointer bits are internally incremented by one. The
higher order five bits of the word address remains
constant. If the master should transmit more than eight
words prior to generating the Stop condition, the
address counter will roll over and the previously
received data will be overwritten. As with the byte write
operation, once the Stop condition is received an
internal write cycle will begin (Figure 4-3).

It is required that VCLK be held at a logic high level
during command and data transfer in order to program
the device. This applies to both byte write and page
write operation. Note, however, that the VCLK is
ignored during the self-timed program operation.
Changing VCLK from high-to-low during the self-timed
program operation will not halt programming of the
device. 

Note:

Page write operations are limited to writing
bytes within a single physical page,
regardless of the number of bytes actually
being written. Physical page boundaries
start at addresses that are integer multi-
ples of the page buffer size (or ‘page size’)
and end at addresses that are integer
multiples of [page size – 1]. If a Page Write
command attempts to write across a
physical page boundary, the result is that
the data wraps around to the beginning of
the current page (overwriting data
previously stored there), instead of being
written to the next page as might be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.

/var/www/html/datasheet/sites/default/files/pdfhtml_dummy/21160G-html.html
background image

24LC21A

DS21160G-page 10

© 2008 Microchip Technology Inc.

FIGURE 4-1:

BYTE WRITE

FIGURE 4-2:

VCLK WRITE ENABLE TIMING

FIGURE 4-3:

PAGE WRITE

Bus Activity
Master

SDA Line

Bus Activity

Control

Byte

Word

Address

Data

S
T

O

P

S

T

A

R

T

A

C

K

S

P

A
C
K

A
C
K

VCLK

SCL

SDA

IN

VCLK

T

HD

:

STA

T

HD

:

STO

T

VHST

T

SPVL

SDA Line

Control

Byte

Word

Address

S

T

O

P

S

T

A

R

T

A

C

K

A

C

K

A

C

K

A

C

K

A

C

K

Data n + 1

Data n + 7

Data (n)

P

S

VCLK

Bus Activity
Master

Bus Activity

Maker
Microchip Technology Inc.
Datasheet PDF Download